PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oscillatory criteria via linearization of half-linear second order delay differential equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, we study oscillation of the half-linear second order delay differential equations of the form [formula]. We introduce new monotonic properties of its nonoscillatory solutions and use them for linearization of considered equation which leads to new oscillatory criteria. The presented results essentially improve existing ones.
Rocznik
Strony
523--536
Opis fizyczny
BIbliogr. 13 poz.
Twórcy
  • Technical University of Kosice Faculty of Electrical Engineering and Informatics Department of Mathematics Letna 9, 042 00 Kosice, Slovakia
  • Technical University of Kosice Faculty of Electrical Engineering and Informatics Department of Mathematics Letna 9, 042 00 Kosice, Slovakia
Bibliografia
  • [1] R.P. Agarwal, S.R. Grace, D. O’Regan, Oscil lation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations, Kluver Academic Publishers, Dotrecht, 2002.
  • [2] B. Baculikova, Oscil lation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett. 91 (2019), 68-75.
  • [3] B. Bacuhkova, Oscillatory behavior of the second order noncanonical differential equation, Electron. J. Qual. Theory Differ. Equ. 89 (2019), 1-17.
  • [4] B. Bacuhkova, Oscillation for second-order differential equations with delay, Electron. J. Differential Equations 2018 (2018) 96, 1-9.
  • [5] O. Dosly, P. Rehak, Half-linear Differential Equations, vol. 202, North-Holland Mathematics Studies, 2005.
  • [6] J. Dzurina, Comparison theorems for nonlinear ODE’s, Math. Slovaca 42 (1992), 299-315.
  • [7] L.H. Erbe, Q. Kong, B.G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1994.
  • [8] S.R. Grace, R.P. Agarwal, R. Pavani, E. Thandapani, On the oscil lation of certain third order nonlinear functional differential equations, Appl. Math. Comput. 202 (2008), 102-112.
  • [9] I. Györi, G. Ladas, Oscillation theory of delay differential equations, The Clarendon Press, Oxford, 1991.
  • [10] I.T. Kiguradze, T.A. Chaturia, Asymptotic Properties of Solutions of Nonatunomous Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht 1993.
  • [11] R. Koplatadze, G. Kvinkadze, I.P. Stavroulakis, Properties A and B of n-th order linear differential equations with deviating argument, Georgian Math. J. 6 (1999), 553-566.
  • [12] T. Kusano, M. Naito, Comparison theorems for functional differential equations with deviating arguments, J. Math. Soc. Japan 3 (1981), 509-533.
  • [13] G.S. Ladde, V. Lakshmikantham, B.G. Zhang, Oscil lation Theory of Differential Equations with Deviating Arguments, Marcel Dekker, New York, 1987.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f7882b6-a23e-430d-86d2-3a60da5939f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.