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Abstract. In the paper, we study oscillation of the half-linear second order delay differential
equations of the form (

r(t)(y′(t))α
)′ + p(t)yα(τ(t)) = 0.

We introduce new monotonic properties of its nonoscillatory solutions and use them for
linearization of considered equation which leads to new oscillatory criteria. The presented
results essentially improve existing ones.
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1. INTRODUCTION

In this paper, we shall study the asymptotic and oscillation behavior of the solutions
of half-linear second order delay differential equations

(r(t)(y′(t))α)′ + p(t)yα(τ(t)) = 0. (E)

We shall assume that

(H1) p, r ∈ C([t0,∞)), p(t) > 0, r(t) > 0, α is the ratio of two positive odd integers,
(H2) τ(t) ∈ C([t0,∞)), τ(t) ≤ t, lim

t→∞
τ(t) =∞.

Moreover, it is assumed that

R(t) =
t∫

t0

r−1/α(s) ds→∞ as t→∞. (1.1)
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By a solution of Eq. (E) we mean a function y(t) ∈ C1([Ty,∞)), Ty ≥ t0, such
that has property r(t)(y′(t))α ∈ C1([Ty,∞)) and y(t) satisfies Eq. (E) on [Ty,∞).
We consider only those solutions y(t) of (E) which satisfy sup{|y(t)| : t ≥ T} > 0
for all T ≥ Ty. We assume that (E) possesses such a solution. A solution of (E) is
called oscillatory if it has arbitrarily large zeros on [Ty,∞) and otherwise it is called
to be nonoscillatory. An equation itself is said to be oscillatory if all its solutions are
oscillatory.

The problem of establishing oscillatory criteria for various types of differential
equations has been a very active research area over the past decades. A large amount
of papers have been devoted to this problem. We mention here several outstanding
monographs by Agarwal et al. [1], Došly and Řehák [5], Erbe et al. [7], Kiguradze and
Chanturia [10], Lade et al. [13] and Györi and Ladas [9] and papers [2–12].

Koplatadze et al. [11] presented very nice oscillatory criterion for

y′′(t) + p(t)y(τ(t)) = 0, (1.2)

based on the following monotonic properties of positive solutions:

y(t) ↑, y(t)
t
↓ . (1.3)

The aim of this paper is to establish new comparison theorems for investigation
of (E). Our first task is linearization of (E) in the sense that we would deduce
oscillation of studied equation from that of its linear forms. To achieve this goal we
provide new monotonic properties of possible nonoscillatory solutions of (E) which
are new even for (1.2) and improves (1.3).

The second task is to provide new oscillatory criteria taking the linear forms of
(E) into account. The third aim is to test the strength of general criteria derived via
Euler differential equation.

2. PRELIMINARY RESULTS

We start with some useful lemmas concerning monotonic properties of nonoscillatory
solutions for studied equations.

Lemma 2.1. Let y(t) be a positive solution of (E). Then r(t)(y′(t))α > 0 and
y(t)
R(t) is decreasing for t ≥ t1 ≥ t0. Moreover, if

∞∫

t0

Rα(τ(s))p(s)ds =∞, (2.1)

then
lim
t→∞

y(t)
R(t) = 0. (2.2)
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Proof. Assume that y(t) is a positive solution of (E). Then (r(t)(y′(t))α)′ < 0 and there
exists t1 ≥ t0 that r(t)(y′(t))α has constant sign for t ≥ t1. Assume on the contrary that
r(t)(y′(t))α < 0. Then there exists constant k > 0 such that r(t)(y′(t))α < −k < 0.
Integrating the previous inequality from t1 to t and using (1.1), we have

y(t) ≤ y(t1)− kR(t)→ −∞ as t→∞.

This is a contradiction and we can conclude that r(t)(y′(t))α > 0. Employing
the monotonic property of r1/α(t)y′(t), we obtain

y(t) ≥
t∫

t1

r1/α(t)y′(t)
r1/α(t) ds ≥ r1/α(t)y′(t)R(t), (2.3)

which implies ( y(t)
R(t) )′ < 0. On the other hand, since y(t)

R(t) is positive and decreasing
there exists

lim
t→∞

y(t)
R(t) = ` ≥ 0.

Assume on the contrary that ` > 0. Then y(t)
R(t) ≥ `, t ≥ t1. Integrating (E) from t1

to t, we obtain

r(t1)(y′(t1))α ≥ `α
t∫

t1

p(s)Rα(τ(s))ds,

which for t→∞ contradicts with (2.1). So that lim
t→∞

y(y)
R(t) = 0. The proof is completed.

Remark 2.2. The monotonic property y(t)
R(t) ↓ of (E) corresponds to y(t)

t ↓ for (1.2).
The next considerations are intended to improve this property.

Since R(t) is increasing, there exists λ ≥ 1 such that

R(t)
R(τ(t)) ≥ λ. (2.4)

Theorem 2.3. Let (2.1) hold and there exist a positive constant β such that

1
α
Rα(τ(t))r1/α(t)R(t)p(t) ≥ β for t ≥ t0. (2.5)

If y(t) is a positive solution of (E), then

y(t)
R1−β(t) is decreasing for t ≥ t1, (2.6)

y(t)
Rβ0(t) is increasing for t ≥ t1, where β0 = β1/αλβ . (2.7)
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Proof. Assume that y(t) is a positive solution of (E). Note that (2.2) implies

lim
t→∞

r1/α(t)y′(t) = 0. (2.8)

Therefore an integration of (E) yields

r1/α(t)y′(t) =



∞∫

t

p(s)yα(τ(s))ds




1/α

. (2.9)

It is easy to see that

(r(t)(y′(t))α)′ = α
(
r1/α(t)y′(t)

)α−1 (
r1/α(t)y′(t)

)′
.

Setting into (E), we have
(
r1/α(t)y′(t)

)′
+ 1
α

(
r1/α(t)y′(t)

)1−α
p(t)yα(τ(t)) = 0.

Then w(t) = r1/α(t)y′(t) is positive decreasing and satisfies

w′(t) + 1
α
w1−α(t)p(t)yα(τ(t)) = 0. (2.10)

On the other hand, (2.3) implies

y(t) ≥ r1/α(t)y′(t)R(t) = w(t)R(t)

and so
yα(τ(t)) ≥ wα(τ(t))Rα(τ(t)) ≥ wα(t)Rα(τ(t)).

Substituting the last inequality into (2.10), we get

w′(t) + 1
α
p(t)Rα(τ(t))w(t) ≤ 0

and
w′(t) + β

R(t)r1/α(t)w(t) ≤ 0

which implies
−w′(t)R(t) ≥ β

r1/α(t)w(t) = βy′(t).

We introduce the auxiliary function

f(t) = (1− β)y(t)− r1/α(t)y′(t)R(t). (2.11)

Simple computation shows that

f ′(t) = −βy′(t)− w′(t)R(t) ≥ −βy′(t) + βy′(t) = 0.



Oscillatory criteria via linearization. . . 527

So function f(t) is increasing and has constant sign, eventually. First we admit that
f(t) ≤ 0 for t ≥ t1. This implies that y/R1−β is increasing. Using this fact together
with (2.9), we have

r1/α(t)y′(t) =



∞∫

t

p(s)yα(τ(s))ds




1/α

=



∞∫

t

yα(τ(s))
Rα(τ(s))

βα

R(s)r1/α(s)ds




1/α

≥



∞∫

t

βα yα(s)
Rα+1(s)r1/α(s)ds




1/α

=



∞∫

t

βα yα(s)
Rα(1−β)(s)

R−αβ−1(s)
r1/α(s) ds




1/α

≥ y(t)
R1−β(t)



∞∫

t

βα
R−αβ−1(s)
r1/α(s) ds




1/α

= y(t)
R(t) .

It follows from the last inequality that y(t)
R(t) is increasing. This is a contradiction and

we conclude that and f(t) > 0 which implies that y(t)
R1−β(t) is decreasing.

Now, we shall show that y(t)
Rβ0 (t) is increasing. Taking into account that y(t)

R1−β(t) is
decreasing and y(t) is increasing, it follows from (2.9) that

r1/α(t)y′(t) =



∞∫

t

βα
yα(τ(s))
Rα(τ(s))

1
R(s)r1/α(s)ds




1/α

≥



∞∫

t

βα
yα(τ(s))

Rα(1−β)(τ(s))
R−αβ(τ(s))
R(s)r1/α(s)ds




1/α

≥



∞∫

t

βα
yα(s)

Rα(1−β)(s)
R−αβ(τ(s))
R(s)r1/α(s)ds




1/α

≥ y(t)



∞∫

t

βα
Rαβ(s)

Rαβ(τ(s))
1

Rα+1(s)r1/α(s)ds




1/α

≥ y(t)



∞∫

t

βαλαβ
1

Rα+1(s)r1/α(s)ds




1/α

= y(t)β1/αλβ

R(t) .

The last inequality implies that
(
y(t)
Rβ0

)′
> 0. Hence, y(t)

Rβ0 is increasing and the proof is
complete.
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Remark 2.4. The monotonic properties

y(t)
Rβ0(t) ↑,

y(t)
R1−β(t) ↓

essentially improves the normally used ones

y(t) ↑, y(t)
R(t) ↓ .

and are new even for (1.2).

3. COMPARISON RESULTS

Now we are prepared to provide new comparison principles that significantly simplify
the examination of half-linear differential equations. We separately discuss the cases
α > 1 and 0 < α < 1.

Theorem 3.1. Let α > 1, and (2.1), (2.5) hold. Then (E) is oscillatory provided that

(
r1/α(t)y′(t)

)′
+ (1− β)1−αλβ(α−1)

α
Rα−1(τ(t))p(t)y(τ(t)) = 0. (L1)

is oscillatory.

Proof. Assume on the contrary that y(t) is a positive solution of (E). It is easy to see
that

[r(t)(y′(t))α]′ =
[
(r1/α(t)y′(t))α

]′
= α

(
r1/α(t)y′(t)

)α−1 (
r1/α(t)y′(t)

)′
.

Using the above relation in (E), we obtain
(
r1/α(t)y′(t)

)′
+ 1
α

(
r1/α(t)y′(t)

)1−α
p(t)yα(τ(t)) = 0. (3.1)

Since y(t)
R1−β (t) is decreasing, we are to the inequality

y(t) ≥ r1/α(t)y′(t)
1− β R(t) (3.2)

which for α > 1 yields

y1−α(t) ≤ (r1/α(t)y′(t))1−α

(1− β)1−α R1−α(t).

Hence (
r1/α(t)y′(t)

)1−α
≥ y1−α(t)
R1−α(t) (1− β)1−α. (3.3)
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Using again the monotonic property of y(t)
R1−β (t), we get

y1−α(t) ≥ y1−α(τ(t))
R(1−β)(1−α)(τ(t))R

(1−β)(1−α)(t). (3.4)

Substituting (3.4) into (3.3), we have in view of (2.4) that

(
r1/α(t)y′(t)

)1−α
≥ (1− β)1−αRβ(α−1)(t)

R(1−β)(1−α)(τ(t)) y1−α(τ(t))

≥ (1− β)1−αλβ(α−1)

R1−α(τ(t)) y1−α(τ(t)).
(3.5)

Combining (3.1) and (3.5), we obtain that y(t) obeys the linear differential inequality

(
r1/α(t)y′(t)

)′
+ (1− β)1−αλβ(α−1)

α
Rα−1(τ(t))p(t)y(τ(t)) ≤ 0. (3.6)

On the other hand, Corollary 1 in [12] ensures that the corresponding differen-
tial equation (L1) has a positive solution. This is a contradiction and the proof is
complete now.

Theorem 3.2. Let 0 < α < 1, and (2.1), (2.5) hold. Then (E) is oscillatory provided
that (

r1/α(t)y′(t)
)′

+ β
1−α

α λ1−α

α(1− β0) 1−α
α

Rα−1(t)y(τ(t)) = 0. (L2)

is oscillatory.

Proof. Assume on the contrary that y(t) is a positive solution of (E). Differentiation
of (2.9) leads to the equation

(r1/α(t)y′(t))′ + 1
α



∞∫

t

p(s)yα(s)ds




1−α
α

p(t)yα(τ(t)) = 0.

Employing that y(t)
Rβ0 (t) is an increasing function, we have

(r1/α(t)y′(t))′ + 1
α

y1−α(τ(t))
Rβ0(1−α)(τ(t))



∞∫

t

p(s)Rαβ0(τ(s))ds




1−α
α

p(t)yα(τ(s)) ≤ 0.

Therefore, y(t) satisfies the linear differential inequality

(r1/α(t)y′(t))′ + 1
α

p(t)
Rβ0(1−α)(τ(t))



∞∫

t

p(s)Rαβ0(τ(s))ds




1−α
α

y(τ(s)) ≤ 0. (3.7)
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Moreover, using (2.4) and (2.5), we obtain
∞∫

t

p(s)Rαβ0(τ(s))ds ≥ αβ
∞∫

t

Rα(β0−1)(τ(s))
r1/α(s)R(s) ds

≥ αβλα(1−β0)
∞∫

t

Rα(β0−1)−1(s)
r1/α(s) ds = βλα(1−β0)

1− β0
Rα(β0−1)(t).

Substituting into (3.7), we get

(r1/α(t)y′(t))′ + β
1−α

α λ(1−β0)(1−α)

α(1− β0) 1−α
α

R(β0−1)(1−α)(t)
Rβ0(1−α)(τ(t)) p(t)y(τ(t)) ≤ 0.

which in view of (2.4) yields that y(t) is a positive solution of the differential inequality
(
r1/α(t)y′(t)

)′
+ β

1−α
α λ1−α

α(1− β0) 1−α
α

Rα−1(t)y(τ(t)) ≤ 0.

By Corollary 1 in [12] the corresponding differential equation (L2) has also a positive
solution. This is a contradiction and the proof is complete now.

Comparison results presented in Theorems 3.1 and 3.2 reduce the examination of
oscillatory properties for (E) to that of linear equations (L1) and (L2).

4. OSCILLATORY CRITERIA

In this part we apply the results from the previous section for establishing new
oscillatory criteria.

To simplify our notation let us denote

κ = (1− β)1−αλβ(α−1)

α
.

Theorem 4.1. Let α > 1, and (2.1), (2.5) hold. If

lim sup
t→∞

{
Rβ−1(τ(t))

τ(t)∫

t0

p(s)R(s)Rα−β(τ(s))ds

+Rβ(τ(t))
t∫

τ(t)

p(s)Rα−β(τ(s))ds

+R1−β0(τ(t))
∞∫

t

p(s)Rα+β0−1(τ(s))ds
}
>

1
κ
,

then (E) is oscillatory.
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Proof. Assume on the contrary that (E) is not oscillatory. By Theorem 3.1, equa-
tion (L1) is also nonoscillatory and we may assume that it possesses an eventually
positive solution y(t). An integration of (L1) yields

y′(t) ≥ κ

r1/α(t)

∞∫

t

p(s)Rα−1(τ(s))y(τ(s)) ds.

Integrating once more, one gets

y(t) ≥ κ
t∫

t1

1
r1/α(u)

∞∫

u

p(s)Rα−1(τ(s))y(τ(s)) dsdu

= κ

t∫

t1

1
r1/α(u)

t∫

u

p(s)Rα−1(τ(s))y(τ(s)) dsdu

+ κ

t∫

t1

1
r1/α(u)

∞∫

t

p(s)Rα−1(τ(s))y(τ(s)) dsdu.

Changing the order of integration, we obtain

y(t) ≥ κ
t∫

t1

p(s)R(s)Rα−1(τ(s))y(τ(s)) ds+ κR(t)
∞∫

t

p(s)Rα−1(τ(s))y(τ(s)) ds.

Hence

y(τ(t)) ≥ κ
τ(t)∫

t1

p(s)R(s)Rα−1(τ(s))y(τ(s)) ds

+ κR(τ(t))
t∫

τ(t)

p(s)Rα−1(τ(s))y(τ(s)) ds

+ κR(τ(t))
∞∫

t

p(s)Rα−1(τ(s))y(τ(s)) ds.
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Employing the fact that y/R1−β is decreasing and y/Rβ0 is increasing the previous
inequality implies

y(τ(t)) ≥ κ y(τ(s))
R1−β(τ(t))

τ(t)∫

t1

p(s)R(s)Rα−β(τ(s)) ds

+ κR(τ(t)) y(τ(t))
R1−β(τ(t))

t∫

τ(t)

p(s)Rα−β(τ(s)) ds

+ κR(τ(t)) y(τ(t))
Rβ0(τ(t))

∞∫

t

p(s)Rα−1(τ(s)) ds.

After simplification, one can see that

{
R(β−1)(τ(t))

τ(t)∫

t1

p(s)R(s)Rα−β(τ(s))ds

+Rβ(τ(t))
t∫

τ(t)

p(s)Rα−β(τ(s))ds+R1−β0(τ(t))
∞∫

t

p(s)Rα+β0−1(τ(s))ds
}
≤ 1
κ
.

This is a contradiction and the proof is complete now.

We denote

ω = β
1−α

α λ1−α

α(1− β0) 1−α
α

.

Theorem 4.2. Let 0 < α < 1, and (2.1), (2.5) hold. If

lim sup
t→∞

{
Rβ−1(τ(t))

τ(t)∫

t1

Rα(s)R1−β(τ(s))p(s)ds

+Rβ(τ(t))
t∫

τ(t)

Rα−1(s)R1−β(τ(s))p(s)ds

+R1−β0(τ(t))
∞∫

t

Rα−1(s)Rβ0(τ(s))p(s)ds
}
>

1
ω
,

then (E) is oscillatory
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Proof. Assume on the contrary that (E) is not oscillatory. By Theorem 3.2, equa-
tion (L2) is also nonoscillatory and we may assume that it possesses an eventually
positive solution y(t). An integration of (L2) yields

y′(t) ≥ ω

r1/α(t)

∞∫

t

Rα−1(s)p(s)y(τ(s)) ds.

Then

y(t) ≥ ω
t∫

t1

1
r1/α(u)

∞∫

u

Rα−1(s)p(s)y(τ(s)) dsdu

= ω

t∫

t1

1
r1/α(u)

t∫

u

Rα−1(s)p(s)y(τ(s)) dsdu

+ ω

t∫

t1

1
r1/α(u)

∞∫

t

Rα−1(s)p(s)y(τ(s)) dsdu.

Consequently

y(t) ≥ ω
t∫

t1

Rα(s)p(s)y(τ(s)) ds+ ωR(t)
∞∫

t

Rα−1(s)p(s)y(τ(s)) ds

and so

y(τ(t)) ≥ ω
τ(t)∫

t1

Rα(s)p(s)y(τ(s))ds+ ωR(τ(t))
t∫

τ(t)

Rα−1(s)p(s)y(τ(s)) ds

+ ωR(τ(t))
∞∫

t

Rα−1(s)p(s)y(τ(s)) ds.

Since y/R1−β is decreasing and y/Rβ0 is increasing the last inequality provides

y(τ(t)) ≥ ω y(τ(t))
R1−β(τ(t))

τ(t)∫

t1

Rα(s)R1−β(τ(s))p(s) ds

+ ωR(τ(t)) y(τ(t))
R1−β(τ(t))

t∫

τ(t)

Rα−1(s)R1−β(τ(s))p(s) ds

+ ωR(τ(t)) y(τ(t))
Rβ0(τ(t))

∞∫

t

Rα−1(s)Rβ0(τ(s))p(s) ds.
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Consequently,
{
Rβ−1(τ(t))

τ(t)∫

t1

Rα(s)R1−β(τ(s))p(s) ds

+Rβ(τ(t))
t∫

τ(t)

Rα−1(s)R1−β(τ(s))p(s) ds

+R1−β0(τ(t))
∞∫

t

Rα−1(s)Rβ0(τ(s))p(s) ds
}
≤ 1
ω
.

This is a contradiction and the proof is complete now.

5. EXAMPLES

The quality of oscillatory criteria is usually tested via Euler differential equation.
Example 5.1. We consider the general Euler differential equation

(r(t)(y′(t))α)′ + a

Rα+1(t)r1/α(t)y
α(τ(t)) = 0 (Ex)

with a > 0, r(t) = tγ , τ(t) = bt and 0 < b < 1. Then
R(t)

R(τ(t)) = λ = bγ/α−1, β = a

α
bα−γ β0 =

( a
α

)1/α
b1−γ/α+β(γ/α−1).

κ = (1− β)1−α

α

(
1
b

)β(α−1)(1−γ/α)

and

ω = β
1−α

α

α(1− β0) 1−α
α

(
1
b

)(1−α)(1−γ/α)
.

By Theorem 4.1, Eq. (Ex) with α > 1 is oscillatory provided that
a

1− β b
(1−γ/α)(α−β) + a

β
b(1−γ/α)(α−β)

(
1− b(1−γ/α)β

)
+ a

1− β0
b(α−γ) >

1
κ

and Theorem 4.2 implies that (Ex) with 0 < α < 1 is oscillatory provided that
a

1− β b
(1−γ/α)(1−β) + a

β
b(1−γ/α)(1−β)

(
1− b(1−γ/α)β

)
+ a

1− β0
b(1−γ/α) >

1
ω
.

Setting values for α and γ, the above criteria generated the corresponding oscillatory
results for (Ex).
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