PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical Calculation of Material Reliability Using Surface Roughness Feature Based on Plasma Material Interaction Experiment Results

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The choice of reactor structural material design must take into account the TOKAMAK fusion reactors' structural reliability. Due to their high levels of heat and energy, fusion reactions have significant deformation effects, which reduce the efficiency of energy production in reactors. Material selection, erosion and damage, heat and stress management, reliability analysis, maintenance, and inspection are crucial elements in determining how reliable fusion reactors are. The focus of this work is on material selection and reliability analysis based on these parameters. The most common wall materials used in fusion reactors are tungsten, beryllium, steel, or graphite. It is advised to utilize aluminum because harmful Beryllium dust limits the study of this element. For this purpose, a target of aluminum samples is established with a plasma of He ions created by glow discharge. The dependability of the samples is determined by calculating the Weibull Distribution and measuring the roughness of the sample surfaces following exposure.
Rocznik
Strony
art. no. 169815
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
  • Energy Systems Engineering, Ankara Yıldırım Beyazıt University Graduate School of Natural Sciences, Turkey
  • Department of Physics,, Faculty of Science, Gazi University, Ankara, Türkiye,, Turkey
  • Energy Systems Engineering, Ankara Yıldırım Beyazıt University Graduate School of Natural Sciences, Turkey
Bibliografia
  • 1. A. Benard and E. C. Bos-Levenbach.Het uitzetten van waarnemingen op waarschijnlijkdeids-papier (The Plotting of Observations on Probability Paper).Statististica Neerlandica.1953;vol. 7:163–173, DOI: 10.1111/j.1467-9574.1953.tb00821.x
  • 2. Apostolakis G. E., Sanzo D. L. Limiter Probabilistic Lifetime Analysis. Fusion Engineering and Design. 1988;Vol. 6:229-267, https://doi.org/10.1016/S0920-3796(88)80111-X
  • 3. Arena P., Maio P. A.Special Issue .Structural and Thermo-Mechanical Analysis in Nuclear Fusion Reactors.MDPI Applied Sciences.2020;web site ref: https://www.mdpi.com/journal/applsci/special_issues/Fusion_Reactors, https://doi.org/10.3390/app122412562
  • 4. A. Rene, R. Iglesias.M.A. Cerdeira.Materials to Be Used in Future Magnetic Confinement Fusion Reactors: A Review, Materials 15. 2022; no. 19: 6591, https://doi.org/10.3390/ma15196591
  • 5. Asadi S. Panahi H., Anwar S., Lone S. A.Reiability Estimation of Burr Type III Distribution under Improved Adavtive Progressive Censoring with Application to Surface Coating.Eksploatacja i Niezawodnosc-Maintenance and Reliability.2023;Vol 25, Issue 2, https://doi.org/10.17531/ein/163054
  • 6. ASME B46.1:2019.Surface Texture (Surface Roughness, Waviness, and Lay).NS-996086, Technical Standards ASME.2020
  • 7. Brams C. M., Scott P. E.Nuclear Fusion-Half a Century of Magnetic Confinement Fusion Research.Bristol.2002; Vol 44; No 8, DOI 10.1088/0741-3335/44/8/701
  • 8. Chan A. Y., Herdrich G., Syring C. Development of Inertial Electrostatic Confinement in IRS.SP2016 3125348.Space Propulsion Conference.Rome.Italy.2016
  • 9. Cleo B. C., Janam J. Jane W. B., Phillip M. H., Kyle K., W. P., Sam R., Arvind P. R., Annette M. T., Xingchen T. W., Robert S. Fusion Energy via Magnetic Confinement.Princeton University.Andlinger Center for Energy, Environment. 2016; 2-15, 2016, web site ref: https://acee.princeton.edu/wp-content/uploads/2016/05/ACEE-Fusion-Distillate.pdf
  • 10. Cronwall O.Structural Lifetime, Reliabiliy and Risk Analysis Approaches for Power Plant Components and Systems.VTT Publications.Julkaisija-Utgivare-publisher.2011.Vol 775; Corpus ID: 196170810
  • 11. Donne A. J. H. Plasma Diagnostics in View of ITER.Fusion Science and Technology. .2017, Vol: 57: 393-400, web site ref: https://www.researchgate.net/profile/A-Donne/publication/297911803_Plasma_Diagnostics_in_View_of_ITER/links/5710ad4608ae19b186939b00/Plasma-Diagnostics-in-View-of-ITER.pdf, https://doi.org/10.13182/FST10-A9430
  • 12. Du, X.Unified Uncertainty Analysis by the First Order Reliability Method.J. Mech. Des. 2008; Vol 30 (9): 091401-09410, DOI:10.1115/1.2943295
  • 13. Freidberg J.P., Mangiarotti F.J., Minervini J. Desgining a Tokamak Fusion Reactor-How Does Plasma Physics Fit In?. Plasma Science and Fusion Center.Massachusetts Insitute of Technology, Cambridge MA.2015; Vol June; 16.,https://doi.org/10.1063/1.4923266
  • 14. Fusion Energy Sciences Workshop.On Plasma Material Interactions-Report on Science Challanges and Research Opportunities in Plasma Material Interactions. U.S. Department of Energy, Office of Science, Fusion Energy Sciences, 2015,
  • 15. Trkov A., Čerček M., Kovačič J., Žefran B. Annual Report 2012.Slovenian Fusion Association. Jožef Stefan Institute. 2013, web site ref: http://www.sfa-fuzija.si/files/2015/04/SFA2012.pdf
  • 16. Guo, J, and Du, X.Reliability Analysis for Multidisciplinary Systems with Random and Internal variables.AIAA, J. 2012. Vol; 48 (1):82-91, https://doi.org/10.2514/1.39696
  • 17. Haider Q.Nuclear Fusion: Holy Grail o Energy.IntechOpen publishing, Nuclear Fusion 2019; Chap 1: 1-17, web site ref: https://www.intechopen.com/chapters/64653, DOI: 10.5772/intechopen.82335
  • 18. IAEA.Atomic and Plasma Material Interaction Data for Fusion. IAEA, Vienna.2007; Vol 15, web site ref: https://www-pub.iaea.org/MTCD/Publications/PDF/apid15_web.pdf, DOI: 978-92-0-131410-9
  • 19. IAEA.Fusion Energy for Peace and Sustainable Development. IAEA. Vienna. 2018: 2-18. web site ref: https://nucleus.iaea.org/sites/fusionportal/SiteAssets/18-03925E_BRO_Fusion.pdf
  • 20. IAEA.Kikuchi M., Lackner K., Tran M. Q.Fusion Physics. Vienna. 2012: 20-21, web site ref: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1562_web.pdf
  • 21. Ibrahim S., Lahboub F. Z., Brault P., Petit A., Caillard A., Millon E., Sauvage T., Fernandez A., Thomann A.L.Influence of helium incorporation on growth process and properties of aluminum thin films deposited by DC Magnetron sputtering.Surface and Coatings Technology.2021; Vol;426, web site ref: https://www.sciencedirect.com/science/article/abs/pii/S0257897221009828, https://doi.org/10.1016/j.surfcoat.2021.127808
  • 22. Behrish R., Harries D. R.International Atomic Energy Agency.Lifetime Predictions For The First Wall and Blanket Structure of Fusion Reactors.Proceedings of a Technical Committee Meeting.Karlsruhe. Nuclear Fusion J. 1986; Vol: 26, DOI 10.1088/0029-5515/26/5/015
  • 23. IoP Publishing Ltd. Nuclear Fusion Half a Century of Magnetic Confinement Fusion Research.2002:230-258, web site ref: https://library.psfc.mit.edu/catalog/online_pubs/conference%20proceedings/fusion%20energy%20conferences/Nuclear%20Fusion%20(IOP)%20half%20a%20century.pdf
  • 24. Jones E. S., Rafelski J.Cold Nuclear Fusion.Scientific American.Springer Nature Publishing.1987: 66-71, web site ref: https://www.fulviofrisone.com/attachments/article/358/Cold%20Nuclear%20Fusion.pdf
  • 25. Kajita S., Kawaguchi, Ohno N., Yoshida N.Enhanced growth of large-scale nanostructures with mettalic ion precipitation in helium plasmas.Scientific Reports. Springer Nature.2018. web site ref: https://www.researchgate.net/publication/322315992_Enhanced_growth_of_large-scale_nanostructures_with_metallic_ion_precipitation_in_helium_plasmas, https://doi.org/10.1038/s41598-017-18476-7
  • 26. Kotov V.Particle conservation in numerical models of the tokamak plasma edge. Physics Plasma Ph Archive.Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung-Plasmaphysic.Partner of the Trilateral Euregio Cluster.Jülich, Germany, 2017; Vol 24, https://doi.org/10.1063/1.4980858
  • 27. K. Wojcyzkowski.New Development in Corrosion Testing: Theory, Methods and Standards.AESF Foundation, Plating and Surface Finishing.2011; Vol January, web site ref: https://www.pfonline.com/articles/new-developments-in-corrosion-testing-theory-methods-and-standards
  • 28. Linden T.Compact Fusion Reactors.CERN Colloquium. Helsinki Institute of Physics 2015; Vol March, web site ref: http://cds.cern.ch/record/2004827
  • 29. L. Rajablou, S.M. Motevalli, F. Fadaei.Study of alpha particle concentration effects as the ash of deuterium-tritium fusion reaction on ignition criteria.Physica Scripta.2022; Vol 97, No 9: DOI 10.1088/1402-4896/ac831a
  • 30. Malo M., Morono A., Hodgson E. R.Plasma Etching to Enhance the Surface Insulating Stability of Aluminumina for Fusion Applications.Nuclear Materials and Energy.Elsevier.2016; Vol 9: 247-250, DOI:10.1016/j.nme.2016.05.008
  • 31. Miyamoto K.Fundamentals of Plasma Physics and Controlled Fusion.2011.3rd Edition: 1-21, web site ref: https://www.nifs.ac.jp/report/NIFS-PROC-88.pdf, DOI 10.1088/0029-5515/38/4/701
  • 32. Nadler J.Inertial-Electrostatic Confinement (IEC) of A Fusion Plasma with Grids. Nuclear Engineering Department, University of Illinois.1995, web site ref: http://sites.apam.columbia.edu/SMproceedings/11.ContributedPapers/11.Nadler.pdf
  • 33. Nordlund K.Atomistic Simulations of Plasma-wall interactions in Fusion Reactors. Physica Scripta. 2006; Vol T124:53-57, DOI 10.1088/0031-8949/2006/T124/011
  • 34. Ongena J., “Nuclear fusion and its large potential for the future world energy supply”, 2016, Nukleonika Journal, pp:425-432, web site ref: https://sciendo.com/pdf/10.1515/nuka-2016-0070
  • 35. Perrault D.Nuclear Fusion Reactors-Safety and Radiation Protection Considerations for Demonstration Reactors that follow ITER facility.IRSN. 2017; Vol Nov: 15-27, web site ref: https://www.irsn.fr/EN/Research/publications-documentation/Scientific-books/Documents/ITER-VA_web_non_imprimable.pdf
  • 36. Rapp J, Temmerman D. G., Van RooIJ G.J., Emmichoven V. Z. P. A., Kleyn A. W.Plasma Facing Materials Research For Fuision Reactors At Fom Rijnhuizen.15th International COnference on Plasma Physics and Applications.Romania Journal Of Physics.2011; Vol 56:30-35
  • 37. Reinhart M., Brezinsek S., Kirschner A., Coenen J.W., Selinger T.S., Schimid K., Hakola A., van der Meiden H., Dejernac R., Tsitrone E., Doerner R., Baldwin M., Nishijima D., Eurofusion Project Workpacage PFC Team.Latest results of Eurofusion plasma-facing components research in the areas of power loading, material erosion and fuel retention. Nuclear Fusion.International Atomic Energy Agency.2022; Vol 62 No 4, ref site: https://iopscience.iop.org/article/10.1088/1741-4326/ac2a6a, DOI 10.1088/1741-4326/ac2a6a
  • 38. Rieth, M.; Schirra, M.; Falkenstein, A.; Graf, P.; Heger, S.; Kempe, H.; Lindau, R.; Zimmermann, H. EUROFER 97 Tensile, Charpy, Creep and Structural Tests; Report FZKA6911; Eurofusion Programme; Forschungzentrum Karlsruhe g.m.b.h.: Karlsruhe, Germany.2003 Appl. Sci. vol:,13, DOI:10.5445/IR/270055720
  • 39. Ruiz J.A., Rivera A., Mima K., Garoz D., Gonzalez-Arrabal R., Gordillo N., Fuchs J, Tanaka K, Fernandez I, Briones F, Perledo J.Plasma-wall interaction in laser inertial fusion reactors: novel proposals for radiation tests of first wall materials.INVE, MEM. Plasma Physics Controlled Fusion, IOP Publishing Ltd, 2012; Vol 54 No 12, DOI 10.1088/0741-3335/54/12/124051
  • 40. S.M. Motevalli, N. Dashtban, M. Maleki.Determination of optimum conditions in ITER tokamak by using zero-dimensional model.Indian Journal of Physics. 2020; Vol 95:2211-2215, https://doi.org/10.1007/s12648-020-01857-6
  • 41. Şerer B., 2005, Hançerlioğulları A., Savruk N.A Design For APEX Fusion Reactor Model By Using Monte Carlo Method.Graduate School of Natural and Applied Sciences Journal, Physics Dpt., Gazi University, Ankara.2010;Vol 18(1):201-210 , web site ref: https://dergipark.org.tr/tr/download/article-file/83346
  • 42. Takashi H., Atsushi O., Miura T., Nakamura D., Boonyarittipong P., Sekita S., Kitajima S.Helium Volumetric Recombining Plasma Formation for Energetic Ion Injection in Radio-Frequency Plasma Device DT-Alpha.Plasma and Fusion Research: Regular Articles. Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Japan. 2016;Vol 11, 2402059, http://dx.doi.org/10.1585/pfr.11.2402059"
  • 43. Takeda S., Pearson R.Nuclear Fusion Power Plants.Power Plants in the Industry. 2018; Chap 6: 101-122, IntechOpen publishing, website ref: https://www.intechopen.com/chapters/62970, DOI: 10.5772/intechopen.80241
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f7745aa-4c54-4556-a068-408c927f4776
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.