PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

One step 3D printing of surface functionalized composite scaffolds for tissue engineering applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A successful approach widely used in materials science to adapt approved materials to specific applications is to design their surface properties. A main challenge in this area is the development of processing routes enabling for a simple but efficient surface design of complex shaped geometries. Against this background, this work aimed at the implementation of self-assembly principles for surface functionalization of 3D-printed poly(lactic-co-glycolic acid) (PLGA)-based constructs with macro- and microporous geometries via precision extruding deposition. Methods: Three-component melts from PLGA, CaCO3 and amphiphilic polymers (poly(2-oxazoline) block copolymer) were printed and their bulk and surface properties were studied. Results: Melts with up to 30 mass % of CaCO3 could be successfully printed with homogeneously distributed mineral particles. PLGA degradation during the printing process was temperature and time dependent: the molecular weight reached 10 to 15% of the initial values after ca. 120 min of heat exposure. Filament surfaces from melts containing CaCO3 show an increasing microroughness along with increasing CaCO3 content. Surface roughness and amphiphilic polymer content improve scaffold wettability with both factors showing synergistic effects. The CaCO3 content of the melts affected the inner filament structure during in vitro degradation in PBS, resulting in a homogeneous mineral particle-associated microporosity for mineral contents of 20 mass % and above. Conclusions: These results provide novel insights into the behavior of three-component melts from PLGA, CaCO3 and amphiphilic polymers during precision extruding deposition and show for the first time that self-assembly processes can be used to tailor scaffolds surface properties under such processing conditions.
Rocznik
Strony
35--45
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
autor
  • Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Chair of Macromolecular Chemistry, Dresden, Germany
autor
  • Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Chair of Macromolecular Chemistry, Dresden, Germany
  • Center of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
autor
  • Technische Universität Dresden, Institut für Werkstoffwissenschaft, Max-Bergmann-Zentrum für Biomaterialien, Dresden, Germany
autor
  • Leibniz-Institut für Polymerforschung Dresden e.V., Institut für Makromolekulare Chemie, Polymer Separation Group, Dresden and Technische Universität Dresden, Dresden, Germany
  • Technische Universität Dresden, Institut für Werkstoffwissenschaft, Max-Bergmann-Zentrum für Biomaterialien, Dresden, Germany
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Krakow, Poland
  • Technische Universität Dresden, Institut für Werkstoffwissenschaft, Max-Bergmann-Zentrum für Biomaterialien, Dresden, Germany
Bibliografia
  • [1] BICO J., TORDEUX C., QUÉRÉ D., Rough wetting, Europhys. Lett., 2001, 55(2), 214–20.
  • [2] CHEN G., XIA Y., LU X., ZHOU X., ZHANG F., GU N., Effects of surface functionalization of PLGA membranes for guided bone regeneration on proliferation and behavior of osteoblasts, J. Biomed. Mater. Res. – Part A, 2013, 101 A(1), 44–53.
  • [3] CROLL T.I., O’CONNOR A.J., STEVENS G.W., COOPER-WHITE J.J., Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: Physical, chemical, and theoretical aspects, Biomacromolecules, 2004, 5(2), 463–73.
  • [4] DHANDAYUTHAPANI B., YOSHIDA Y., MAEKAWA T., KUMAR D.S., Polymeric scaffolds in tissue engineering application: A review, Int. J. Polym. Sci., 2011(ii).
  • [5] DUAN B., WANG M., ZHOU W.Y., CHEUNG W.L., LI Z.Y., LU W.W., Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering, Acta Biomater., 2010, 6(12), 4495–4505.
  • [6] FLATH T., NEUNZEHN J., HACKER M.C., WIESMANN H.-P., SCHULZ-SIEGMUND, MICHAELA SCHULZE F.P., Ein Doppelschneckenextruder zur Materialdosierung in einem Rapid Prototyping-Prozess, 2016.
  • [7] HOUCHIN M.L., TOPP E.M., Physical properties of PLGA films during polymer degradation, J. Appl. Polym. Sci., 2009, 114(5), 2848–54.
  • [8] HUANG Y., REN J., REN T., GU S., TAN Q. et al., Bone marrow stromal cells cultured on poly (lactide-co-glycolide)/ nano-hydroxyapatite composites with chemical immobilization of Arg-Gly-Asp peptide and preliminary bone regeneration of mandibular defect thereof, J. Biomed. Mater. Res. – Part A, 2010, 95(4), 993–1003.
  • [9] IDASZEK J., BRUININK A., WIĘSZKOWSKI W., Delayed degradation of poly(lactide-co-glycolide) accelerates hydrolysis of poly(ε-caprolactone) in ternary composite scaffolds, Polym. Degrad. Stab., 2016, 124, 119–27.
  • [10] JUNKER R., DIMAKIS A., THONEICK M., JANSEN J.A., Effects of implant surface coatings and composition on bone integration: A systematic review, Clin. Oral. Implants Res., 2009, 20 (Suppl. 4), 185–206.
  • [11] KIM J., MCBRIDE S., TELLIS B., ALVAREZ-URENA P., SONG Y.H. et al., Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model, Biofabrication, 2012, 4(2).
  • [12] KOURTI M.E., FOTINOGIANNOPOULOU G., FEGA E., PITSIKALIS M., Statistical Copolymers of 2-Methyl- and 2-Phenyl-oxazoline by Metallocene-Mediated Cationic Ring-Opening Polymerization: Synthesis, Reactivity Ratios, Kinetics of Thermal Decomposition and Self-Assembly Behavior in Aqueous Solutions, J. Macromol. Sci. Part A Pure Appl. Chem., 2015, 52(8), 630–41.
  • [13] LEE J.W., KANG K.S., LEE S.H., KIM J.Y., LEE B.K., CHO D.W., Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres, Biomaterials, 2011, 32(3), 744–52.
  • [14] LI J., STAYSHICH R.M., MEYER T.Y., Exploiting sequence to control the hydrolysis behavior of biodegradable PLGA copolymers, J. Am. Chem. Soc., 2011, 133(18), 6910–13.
  • [15] METWALLY H.A., ARDAZISHVILI R.V., SEVERYUKHINA A.N., ZAHAREVICH A.M., SKAPTSOV A.A. et al., The Influence of Hydroxyapatite and Calcium Carbonate Microparticles on the Mechanical Properties of Nonwoven Composite Materials Based on Polycaprolactone, Bionanoscience, 2014, 5(1), 22–30.
  • [16] PARK S.H., PARK D.S., SHIN J.W., KANG Y.G., KIM H.K. et al., Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA, J. Mater. Sci. Mater. Med., 2012, 23(11), 2671–78.
  • [17] QU X., CUI W., YANG F., MIN C., SHEN H. et al., The effect of oxygen plasma pretreatment and incubation in modified simulated body fluids on the formation of bone-like apatite on poly(lactide-co-glycolide) (70/30), Biomaterials, 2007, 28(1), 9–18.
  • [18] RUMIAN L., WOJAK I., SCHARNWEBER D., PAMULA E., Resorbable scaffolds modified with collagen type I or hydroxyapatite: in vitro studies on human mesenchymal stem cells, Acta Bioeng. Biomech., 2013, 15(1), 61–67.
  • [19] RUPP F., SCHEIDELER L., REHBEIN D., AXMANN D., GEIS- -GERSTORFER J., Roughness induced dynamic changes of wettability of acid etched titanium implant modifications, Biomaterials, 2004, 25(7–8), 1429–38.
  • [20] SCHARNWEBER D., HUBNER L., ROTHER S., HEMPEL U., ANDEREGG U. et al., Glycosaminoglycan derivatives: promising candidates for the design of functional biomaterials, J. Mater. Sci. Med., 2015, 26(9).
  • [21] SHIM J.-H., KIM J.Y., LEE S.-H., KANG S.-W., Effect of Thermal Degradation of SFF-Based PLGA Scaffolds Fabricated Using a Multi-head Deposition System Followed by Change of Cell Growth Rate, J. Biomater. Sci., 2010, 1069–80.
  • [22] SIMPSON R.L., NAZHAT S.N., BLAKER J.J., BISMARCK A., HILL R. et al., A comparative study of the effects of different bioactive fillers in PLGA matrix composites and their suitability as bone substitute materials: A thermo-mechanical and in vitro investigation, J. Mech. Behav. Biomed. Mater., 2015, 50, 277–89.
  • [23] WAN Y., QU X., LU J., ZHU C., WAN L. et al., Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment, Biomaterials, 2004, 25(19), 4777–4783.
  • [24] WOJAK-CWIK I.M., HINTZE V., SCHNABELRAUCH M., MOELLER S., DOBRZYŃSKI P. et al., Poly(L-lactide-coglycolide) scaffolds coated with collagen and glycosaminoglycans: Impact on proliferation and osteogenic differentiation of human mesenchymal stem cells, J. Biomed. Mater. Res. Part A, 2013, 101(11), 3109–22.
  • [25] WOJAK I., PAMUŁA E., DOBRZYŃSKI P., ZIMMERMANN H., WORCH H. et al., Coating of poly(l-lactide-co-glycolide) scaffolds with collagen/glycosaminoglycan matrices and their effects on osteoblast behaviour, Eng. Biomater., 2009, 12, 9–13.
  • [26] WU L., DING J., In vitro degradation of three-dimensional porous poly(D,L-lactide-co- glycolide) scaffolds for tissue engineering, Biomaterials, 2004, 25(27), 5821–30.
  • [27] YANG F., CUI W., XIONG Z., LIU L., BEI J., WANG S., Poly(l,l- -lactide-co-glycolide)/tricalcium phosphate composite scaffold and its various changes during degradation in vitro, Polym. Degrad. Stab., 2006, 91(12), 3065–73.
  • [28] YANG Y., ZHAO Y., TANG G., LI H., YUAN X., FAN Y., In vitro degradation of porous poly(l-lactide-co-glycolide)/β- -tricalcium phosphate (PLGA/β-TCP) scaffolds under dynamic and static conditions, Polym. Degrad. Stab., 2008, 93(10), 1838–45.
  • [29] YEN H.J., TSENG C.S., HSU S.H., TSAI C.L., Evaluation of chondrocyte growth in the highly porous scaffolds made by fused deposition manufacturing (FDM) filled with type II collagen, Biomed. Microdevices, 2009, 11(3), 615–24.
Uwagi
(GermanPolish project GoBone, No.01DS16010A) and AGH University of Science and Technology statutory founds (No. 11.11.160.182).
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f6ee7cf-431a-458e-9d55-86afd16ca5bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.