PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Similarity analysis of dynamic temperature measurements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Different temperature sensors show different measurement values when excited by the same dynamic temperature source. Therefore, a method is needed to determine the difference between dynamic temperature measurements. This paper proposes a novelty approach to treating dynamic temperature measurements over a period of time as a temperature time series, and derives the formula for the distance between the measurement values using uniform sampling within the time series analysis. The similarity is defined in terms of distance to measure the difference. The distance measures were studied on the analog measurement datasets. The results show that the discrete Fréchet distance has stronger robustness and higher sensitivity. The two methods have also been applied to an experimental dataset. The experimental results also confirm that the discrete Fréchet distance performs better.
Rocznik
Strony
283--300
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr., wzory
Twórcy
autor
  • College of Metrological Technology and Engineering, China Jiliang University, Hangzhou 310018, China
autor
  • College of Metrological Technology and Engineering, China Jiliang University, Hangzhou 310018, China
autor
  • College of Metrological Technology and Engineering, China Jiliang University, Hangzhou 310018, China
autor
  • College of Metrological Technology and Engineering, China Jiliang University, Hangzhou 310018, China
Bibliografia
  • [1] Li, Y., Zhang, Z., Zhao, C., Hao, X., Dong, N., Yin, W., & Pang, Z. (2020). Laser based method for dynamic calibration of thermocouples. Applied Thermal Engineering, 174, 115276. https://doi.org/10.1016/j.applthermaleng.2020.115276
  • [2] Mandal, S., Santhi, B., Sridhar, S., Vinolia, K., & Swaminathan, P. (2019). Minor fault detection of thermocouple sensor in nuclear power plants using time series analysis. Annals of Nuclear Energy, 134, 383-389. https://doi.org/10.1016/j.anucene.2019.07.038
  • [3] Kunt, T. A., McAvoy, T. J., Cavicchi, R. E., & Semancik, S. (1998). Optimization of temperature programmed sensing for gas identification using micro-hotplate sensors. Sensors and Actuators B: Chemical, 53(1-2), 24-43. https://doi.org/10.1016/S0925-4005(98)00244-5
  • [4] Aghabozorgi, S., Shirkhorshidi, A. S., & Wah, T. Y. (2015). Time-series clustering - a decade review. Information Systems, 53, 16-38. https://doi.org/10.1016/j.is.2015.04.007
  • [5] Mukherjee, R., & Memik, S. O. (2006, July). Systematic temperature sensor allocation and placement for microprocessors. In 2006 43rd ACM/IEEE Design Automation Conference (pp. 542-547). IEEE. https://doi.org/10.1145/1146909.1147051
  • [6] Guo, P., Infield, D., & Yang, X. (2011). Wind turbine generator condition-monitoring using temperature trend analysis. IEEE Transactions on Sustainable Energy, 3(1), 124-133. https://doi.org/10.1109/TSTE.2011.2163430
  • [7] Ortega, A., Marco, S., Perera, A., Šundic, T., Pardo, A., & Samitier, J. (2001). An intelligent detector based on temperature modulation of a gas sensor with a digital signal processor. Sensors and Actuators B: Chemical, 78(1-3), 32-39. https://doi.org/10.1016/S0925-4005(01)00788-2
  • [8] Driemel, A., Krivošija, A., & Sohler, C. (2016). Clustering time series under the Fréchet distance. In Proceedings of the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 766-785). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611974331.ch55
  • [9] Jiang, F., Zhou, Y., Qin, M., & Wang, X. (2021, March). A Trajectory Compression Method Based on Predict Distance. In IOP Conference Series: Earth and Environmental Science (Vol. 693, No. 1, p. 012091). IOP Publishing. https://doi.org/10.1088/1755-1315/693/1/012091
  • [10] Fan, X., Lei, Y., Wang, Y., & Lu, Y. (2016). Long-term intuitionistic fuzzy time series forecasting model based on vector quantisation and curve similarity measure. IET Signal Processing, 10(7), 805-814. https://doi.org/10.1049/iet-spr.2015.0496
  • [11] Hadi, A. S., & Nyquist, H. (1999). Frechet distance as a tool for diagnosing multivariate data. Linear Algebra and its Applications, 289(1-3), 183-201. https://doi.org/l10.1016/S0024-3795(98)10237-9
  • [12] Jiang J. (2010). Time series clustering based on hidden Markov model. [Doctoral dissertation. Ningxia University). Wanfang Data. https://doi.org/10.7666/d.y1682407 (in Chinese)
  • [13] Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., & Keogh, E. (2013). Experimental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge Discovery, 26(2), 275-309. https://doi.org/10.1007/s10618-012-0250-5
  • [14] Pree, H., Herwig, B., Gruber, T., Sick, B., David, K., & Lukowicz, P. (2014). On general purpose time series similarity measures and their use as kernel functions in support vector machines. Information Sciences, 281, 478-495. https://doi.org/10.1016/j.ins.2014.05.025
  • [15] Fréchet, M. M. (1906). Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo, 22(1), 1-72. https://doi.org/10.1007/BF03018603 (in French)
  • [16] Eiter, T., & Mannila, H. (1994). Computing discrete Fréchet distance (Report No. CD-TR 94/64). Christian Doppler Laboratory für Expertensysteme.
  • [17] Chan, T. M., & Rahmati, Z. (2018). An improved approximation algorithm for the discrete Fréchet distance. Information Processing Letters, 138, 72-74. https://doi.org/10.1016/j.ipl.2018.06.011
  • [18] Zimmerschied, R., & Isermann, R. (2010). Nonlinear time constant estimation and dynamic compensation of temperature sensors. Control Engineering Practice, 18(3), 300-310. https://doi.org/10.1016/j.conengprac.2009.11.008
  • [19] Tagawa, M., & Ohta, Y. (1997). Two-thermocouple probe for fluctuating temperature measurement in combustion - Rational estimation of mean and fluctuating time constants. Combustion and flame, 109(4), 549-560. https://doi.org/10.1016/S0010-2180(97)00044-8
  • [20] Li, Y., Zhang, Z., & Hao, X. (2018). Blind system identification of two-thermocouple sensor based on cross-relation method. Review of Scientific Instruments, 89(3). https://doi.org/10.1063/1.5019965
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f6eb879-8d5e-49f1-9726-1d51fed500b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.