PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On a Question of Pełczyński about Strictly Singular Operators

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We exhibit new examples of weakly compact strictly singular operators with dual not strictly cosingular and characterize the weakly compact strictly singular surjections with strictly cosingular adjoint as those having strictly singular bitranspose. We then obtain new examples of super-strictly singular quotient maps and show that the strictly singular quotient maps in Kalton–Peck sequences are not super-strictly singular.
Rocznik
Strony
27--36
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Departamento de Matemáticas Universidad de Extremadura Avda de Elvas s/n 06071 Badajoz, Spain
autor
  • Dipartimento di Matematica Università di Roma I, La Sapienza Roma, Italy
autor
  • Escuela Politécnica Universidad de Extremadura Avenida de la Universidad s/n 10071 Cáceres, Spain
Bibliografia
  • [1] F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math. 233, Springer, Berlin.
  • [2] K. Ball, An elementary introduction to modern convex geometry, in: Flavors of Geometry, S. Levy (ed.), MSRI Publ. 31, Cambridge Univ. Press, 1997, 1–58.
  • [3] F. Cabello Sánchez, J. M. F. Castillo, N. J. Kalton and D. T. Yost, Twisted sums with C(K)-spaces, Trans. Amer. Math. Soc. 355 (2003), 4523–4541.
  • [4] F. Cabello, J. M. F. Castillo and J. Suárez, On strictly singular non-linear centralizers, Nonlinear Anal., to appear.
  • [5] J. M. F. Castillo and M. González, Three-Space Problems in Banach Space Theory, Lecture Notes in Math. 1667, Springer, Berlin, 1997.
  • [6] M. González, On the duality problem for weakly compact strictly singular operators, Quaestiones Math. 28 (2005), 37–38.
  • [7] S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72–104.
  • [8] R. C. James, Super-reflexive spaces with bases, Pacific J. Math. 41 (1972), 409–419.
  • [9] N. J. Kalton, The three-space problem for locally bounded F-spaces, Compos. Math. 37 (1978), 243–276.
  • [10] —, Locally complemented subspaces and Lp for p < 1, Math. Nachr. 115 (1984), 71–97.
  • [11] N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three-space problem, Trans. Amer. Math. Soc. 255 (1979), 1–30.
  • [12] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, 1977.
  • [13] A. Pełczynski, On strictly singular and strictly cosingular operators I: strictly singular and strictly cosingular operators in C(S)-spaces, Bull. Acad. Polon. Sci. 13 (1965), 31–36.
  • [14] G. Pisier, Holomorphic semi-groups and the geometry of Banach spaces, Ann. Of Math. 115 (1982), 375–392.
  • [15] A. Plichko, Superstrictly singular and superstrictly cosingular operators, in: Functional Analysis and its Applications, North-Holland Math. Stud. 197, Elsevier, Amsterdam, 2004, 239–255.
  • [16] R. L. Schilling, Measures, Integrals and Martingales, Cambridge Univ. Press, 2005.
  • [17] B. Sims, “Ultra”-techniques in Banach Space Theory, Queen’s Papers in Pure Appl. Math. 60, Kingston, ON, 1982.
  • [18] J. Suárez, The Kalton centralizer is not strictly singular on Lp, Proc. Amer. Math. Soc., in press.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f6e2a29-3f58-45b5-96e9-47aaf893fdf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.