Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Hardware-in-loop (HIL) is a technique that allows one to simulate the behavior of a technical system in real time. This makes it a valuable tool for controller validation in many fields including photovoltaic systems. This paper proposes an experiment solution for maximizing power of the photovoltaic (PV) panel using HIL simulation. The proposed HIL configuration consists of two parts. The first part includes the PV, the DC-DC boost converter and load are simulated using HYPERSIM and run on the real-time OPAL-RT simulator. The second part is the real MPPT controller based on the perturbation and observation (P&O) algorithm for maximum power point tracking (MPPT) using the TMS320F28379D board. To evaluate the effectiveness of the proposed HIL configuration, the paper also presents a software-in-loop (SIL) simulation configuration for MPPT including the PV, the boost converter, load and MPPT controller based on the P&O algorithm which are simulated using HYPERSIM and run on the real-time OPAL-RT simulator. The obtained results by the proposed HIL configuration are compared with those gained by the SIL configuration on the A10J-S72-175 PV module under different irradiance and temperature levels. The obtained results show that the proposed HIL configuration can be used to perform MPPT experiments for PV under different environmental conditions. In addition, the compared results show that the proposed HIL configuration fulfills its usefulness for evaluating the practical MPPT controllers.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
831--847
Opis fizyczny
Bibliogr. 27 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
- Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, No. 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City, Vietnam
autor
- Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, No. 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City, Vietnam
Bibliografia
- [1] Nagadurga T., Narasimham P.V.R.L., Vakula V.S., Devarapalli R., Gray wolf optimization-based optimal grid connected solar photovoltaic system with enhanced power quality features, Concurrency and Computation: Practice and Experience, vol. 34, no. 5, e6696 (2022), DOI: 10.1002/cpe.6696.
- [2] Sutikno T., Cahya Subrata A., Pau G., Jusoh A., Ishaque K., Maximum power point tracking techniques for low-cost solar photovoltaic applications–Part I: constant parameters and trial-and-error, Archives of Electrical Engineering, vol. 72, no. 1, pp. 125–145 (2023), DOI: 10.24425/aee.2023.143693.
- [3] Dahlan U.A., Bahru J., Maximum power point tracking techniques for low-cost solar photovoltaic applications – Part II: Mathematical Calculation and Measurement and Comparison, criteria on choices and suitable MPPT techniques, Archives of Electrical Engineering, vol. 72, no. 2, pp. 299–322 (2023), DOI: 10.24425/aee.2023.145410.
- [4] Gómez-Luna E., Palacios-Bocanegra L., Candelo-Becerra J.E., Real-time Simulation with OPAL-RT Technologies and Applications for Control and Protection Schemes in Electrical Networks, Journal of Engineering Science & Technology Review, vol. 12, no. 3 (2019).
- [5] Moutchou M., Jbari A., Fast photovoltaic IncCond-MPPT and backstepping control, using DC-DC boost converter, International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 1, pp. 1101–1112 (2020), DOI: 10.11591/ijece.v10i1.pp1101-1112.
- [6] Diouri O., Es-Sbai N., Errahimi F., Gaga A., Alaoui C., Modeling and design of single-phase PV inverter with MPPT algorithm applied to the boost converter using back-stepping control in standalone mode, International Journal of Photoenergy, vol. 2019 (2019), DOI: 10.1155/2019/7021578.
- [7] Mostafa H.H., Ibrahim A.M., Anis W.R., A performance analysis of a hybrid golden section search methodology and a nature-inspired algorithm for MPPT in a solar PV system, Archives of Electrical Engineering, vol. 68, no. 3, pp. 611–627 (2019), DOI: 10.24425/aee.2019.129345.
- [8] Sibtain D., Gulzar M.M., Shahid K., Javed I., Murawwat S., Hussain M.M., Stability analysis and design of variable step-size P&O algorithm based on fuzzy robust tracking of MPPT for standalone/grid connected power system, Sustainability, vol. 14, no. 15, 8986 (2022), DOI: 10.3390/su14158986.
- [9] Haseeb I., Armghan A., Khan W., Alenezi F., Alnaim N., Ali F., Muhammad F., Albogamy F.R., Ullah N., Solar power system assessments using ann and hybrid boost converter based MPPT algorithm, Applied Sciences, vol. 11, no. 23, 11332 (2021), DOI: 10.3390/app112311332.
- [10] Zdiri M.A., Khelifi B., Salem F. Ben, Abdallah H.H., A Comparative Study of Distinct Advanced MPPT Algorithms for a PV Boost Converter, International Journal of Renewable Energy Research (IJRER), vol. 11, no. 3, pp. 1156–1165 (2021), DOI: 10.20508/ijrer.v11i3.12079.g8282.
- [11] Nagadurga T., Narasimham P.V.R.L., Vakula V.S., Harness of maximum solar energy from solar PV strings using particle swarm optimisation technique, International Journal of Ambient Energy, vol. 42, no. 13, pp. 1506–1515 (2021), DOI: 10.1080/01430750.2019.1611643.
- [12] Nagadurga T., Narasimham P.V.R.L., Vakula V.S., Global maximum power point tracking of solar PV strings using the teaching learning based optimisation technique, International Journal of Ambient Energy, vol. 43, no. 1, pp. 1883–1894 (2022), DOI: 10.1080/01430750.2020.1721327.
- [13] Nagadurga T., Narasimham P.V.R.L., Vakula V.S., Global maximum power point tracking of solar photovoltaic strings under partial shading conditions using cat swarm optimization technique, Sustainability (Switzerland), vol. 13, no. 19 (2021), DOI: 10.3390/su131911106.
- [14] Nagadurga T., Lakshmi Narasimham P.V.R., Vakula V.S., Devarapalli R., García Márquez F.P., Enhancing global maximum power point of solar photovoltaic strings under partial shading conditions using chimp optimization algorithm, Energies, vol. 14, no. 14 (2021), DOI: 10.3390/en14144086.
- [15] Raiker G.A., Loganathan U., Current control of boost converter for PV interface with momentum-based perturb and observe MPPT, IEEE Transactions on Industry Applications, vol. 57, no. 4, pp. 4071–4079 (2021), DOI: 10.1109/tia.2021.3081519.
- [16] Khan M.J., Mathew L., Artificial neural network-based maximum power point tracking controller for real-time hybrid renewable energy system, Soft Computing, vol. 25, pp. 6557–6575 (2021), DOI: 10.1007/s00500-021-05653-0.
- [17] Sahoo J., Samanta S., Bhattacharyya S., Adaptive PID controller with P&O MPPT algorithm for photovoltaic system, IETE Journal of Research, vol. 66, no. 4, pp. 442–453 (2020), DOI: 10.1080/03772063.2018.1497552.
- [18] Al-Shammaa A.A.M., Abdurraqeeb A., Noman A.M., Alkuhayli A., Farh H.M.H., Hardware-In-the-Loop Validation of Direct MPPT Based Cuckoo Search Optimization for Partially Shaded Photovoltaic System, Electronics, vol. 11, no. 10, p. 1655 (2022), DOI: 10.3390/electronics11101655.
- [19] Huang W., Shu M., Li T., Sun Y., Ma L., MPPT test based on hardware-in-the-loop simulation platform of photovoltaic systems, in 2020 IEEE 3rd International Conference on Electronics Technology (ICET), pp. 463–466 (2020), DOI: 10.1109/icet49382.2020.9119670.
- [20] Xiaodong Y., Yan Z., Weiping Z., Real-time simulation and research on photovoltaic power system based on RT-LAB, The Open Fuels & Energy Science Journal, vol. 8, no. 1, pp. 183–188 (2015).
- [21] Zhang K., Control simulation and experimental verification of maximum power point tracking based on rt-lab, International Journal of Engineering, vol. 29, no. 10, pp. 1372–1379 (2016.
- [22] Noureen S.S., Roy V., Bayne S.B., An overall study of a real-time simulator and application of RT-LAB using MATLAB simpowersystems, in 2017 IEEE green energy and smart systems conference (IGESSC), IEEE, pp. 1–5 (2017), DOI: 10.1109/igesc.2017.8283453.
- [23] Zhang Z., Song G., Zhou J., Zhang X., Yang B., Liu C., Guerrero J.M., An adaptive backstepping control to ensure the stability and robustness for boost power converter in DC microgrids, Energy Reports, vol. 8, pp. 1110–1124 (2022), DOI: 10.1016/j.egyr.2022.02.024.
- [24] Basha C.H.H., Rani C., Different conventional and soft computing MPPT techniques for solar PV systems with high step-up boost converters: A comprehensive analysis, Energies, vol. 13, no. 2, 371 (2020), DOI: 10.3390/en13020371.
- [25] Samano-Ortega V., Padilla-Medina A., Bravo-Sanchez M., Rodriguez-Segura E., Jimenez-Garibay A., Martinez-Nolasco J., Hardware in the loop platform for testing photovoltaic system control, Applied Sciences, vol. 10, no. 23, 8690 (2020), DOI: 10.3390/app10238690.
- [26] Khazaei J., Miao Z., Piyasinghe L., Fan L., Real-time digital simulation-based modeling of a single-phase single-stage PV system, Electric Power Systems Research, vol. 123, pp. 85–91 (2015), DOI: 10.1016/j.epsr.2015.01.023.
- [27] Mihalič F., Truntič M., Hren A., Hardware-in-the-loop simulations: A historical overview of engineering challenges, Electronics, vol. 11, no. 15, 2462 (2022), DOI: 10.3390/electronics11152462.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f68a566-bb0b-4639-95f4-0179acbabbd8