Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A new class of functions called ‘Rδ-supercontinuous functions’ is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity which already exist in the literature is elaborated. The class of Rδ-supercontinuous functions (Math. Bohem., to appear) properly contains the class of Rz-supercontinuous functions which in its turn properly contains the class of Rcl-supercontinuous functions (Demonstratio Math. 46(1) (2013), 229–244) and so includes all cl-supercontinuous (=clopen continuous) functions (Applied Gen. Topol. 8(2) (2007), 293–300; Indian J. Pure Appl. Math. 14(6) (1983), 767–772) and is properly contained in the class of R-supercontinuous functions (Demonstratio Math. 43(3) (2010), 703–723).
Wydawca
Czasopismo
Rocznik
Tom
Strony
433--448
Opis fizyczny
ibliogr. 38 poz.
Twórcy
autor
- Department of Mathematics, Hindu College, University of Delhi, Delhi 110007, India
autor
- Department of Mathematics, A.R.S.D. College, University of Delhi, New Delhi 110021, India
autor
- Department of Mathematics, Sri Aurobindo College, University of Delhi, New Delhi 110017, India
autor
- Department of Mathematics, Shivaji College, University of Delhi, New Delhi 110027, India
Bibliografia
- [1] F. Beckhoff, Topologies on the spaces of ideals of a Banach algebra, Studia Math. 115 (1995), 189–205.
- [2] F. Beckhoff, Topologies on the ideal space of a Banach algebra and spectral synthesis, Proc. Amer. Math. Soc. 125 (1997), 2859–2866.
- [3] A. S. Davis, Indexed system of neighbourhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886–893.
- [4] E. Ekici, Generalization of perfectly continuous, regular set-connected and clopen functions, Acta Math. Hungar. 107(3) (2005), 193–206.
- [5] A. M. Gleason, Universal locally connected refinements, Illinois J. Math. 7 (1963), 521–531.
- [6] J. K. Kohli, A class of mappings containing all continuous and all semiconnected mappings, Proc. Amer. Math. Soc. 72(1) (1978), 175–181.
- [7] J. K. Kohli, A framework including the theories of continuous and certain noncontinuous functions, Note Mat. 10(1) (1990), 37–45.
- [8] J. K. Kohli, A unified approach to continuous and certain non-continuous functions, J. Aust. Math. Soc. 48(3) (1990), 347–358.
- [9] J. K. Kohli, A unified approach to continuous and certain non-continuous functions II , Bull. Austral. Math. Soc. 41(1) (1990), 57–74.
- [10] J. K. Kohli, Change of topology, characterizations and product theorems for semilocally P-spaces, Houston J. Math. 17(3) (1991), 335–350.
- [11] J. K. Kohli, R. Kumar, z-supercontinuous functions, Indian J. Pure Appl. Math. 33(7) (2002), 1097–1108.
- [12] J. K. Kohli, D. Singh, D-supercontinuous functions, Indian J. Pure Appl. Math. 34(7) (2003), 1089–1100.
- [13] J. K. Kohli, D. Singh, Almost cl-supercontinuous functions, Appl. Gen. Topol. 10(1) (2009), 1–12.
- [14] J. K. Kohli, D. Singh, δ-perfectly continuous functions, Demonstratio Math. 42(1) (2009), 221–231.
- [15] J. K. Kohli, D. Singh, Separation axioms between regularity and R0-spaces, (preprint).
- [16] J. K. Kohli, D. Singh, J. Aggarwal, F-supercontinuous functions, Appl. Gen. Topol. 10(1) (2009), 69–83.
- [17] J. K. Kohli, D. Singh, J. Aggarwal, R-supercontinuous functions, Demonstratio Math. 43(3) (2010), 703–723.
- [18] J. K. Kohli, D. Singh, J. Aggarwal, Rθ-supercontinuous functions, (preprint).
- [19] J. K. Kohli, D. Singh, C. P. Arya, Perfectly continuous functions, Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau 18 (2008), 99–110.
- [20] J. K. Kohli, D. Singh, R. Kumar, Some properties of strongly θ-continuous functions, Bull. Calcutta Math. Soc. 100 (2008), 185–196.
- [21] J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math. Soc. 148 (1970), 265–0272.
- [22] N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly 67 (1960), 269.
- [23] B. M. Munshi, D. S. Bassan, Super-continuous mappings, Indian J. Pure Appl. Math. 13 (1982), 229–236.
- [24] T. Noiri, On δ-continuous functions, J. Korean Math. Soc. 16 (1980), 161–166.
- [25] T. Noiri, Supercontinuity and some strong forms of continuity, Indian J. Pure. Appl. Math. 15(3) (1984), 241–250.
- [26] I. L. Reilly, M. K. Vamanamurthy, On super-continuous mappings, Indian J. Pure. Appl. Math. 14(6) (1983), 767–772.
- [27] N. A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk 38(1943), 110–113.
- [28] D. Singh, D*-supercontinuous functions, Bull. Calcutta Math. Soc. 94(2) (2002), 67–76.
- [29] D. Singh, cl-supercontinuous functions, Appl. Gen. Topol. 8(2) (2007), 293–300.
- [30] D. Singh, B. K. Tyagi, J. Aggarwal, J. K. Kohli, Rz-supercontinuous functions, Math. Bohem. (to appear).
- [31] D. W. B. Somerset, Ideal spaces of Banach algebras, Proc. London Math. Soc. 78(3) (1999), 369–400.
- [32] T. Soundararajan, Weakly Hausdorff spaces and cardinality of spaces, General Topology and its relations to Modern Analysis and Algebra, Proceedings Kanpur Topology Conference 1968, Academia, Prague 1971, 301–306.
- [33] L. A. Steen, J. A. Seeback, Jr., Counter Examples in Topology, Springer Verlag, New York, 1978.
- [34] B. K. Tyagi, J. K. Kohli, D. Singh, Rcl-supercontinuous functions, Demonstratio Math. 46(1) (2013), 229–244.
- [35] R. Vaidyanathswamy, Treatise on Set Topology, Chelsea Publishing Company, New York, 1960.
- [36] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), 103–118.
- [37] C. T. Yang, On paracompact spaces, Proc. Amer. Math. Soc. 5(2) (1954), 185–194.
- [38] G. S. Young, Introduction of local connectivity by change of topology, Amer. J. Math. 68 (1946), 479–494.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f66c8f0-a657-4a48-95c8-df9add0ff0b4