Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a particular form of practical ℎ-observers for piecewise continuous Lipschitz, one-sided piecewise continuous Lipschitz systems and quasi-one-sided piecewise continuous Lipschitz systems is extended to nonlinear non-autonomous dynamical systems with disturbances. With the notion of practical ℎ-stable functions, the obtained state estimates are used for an eventual feedback control, and the practical separation principle is tackled. An example is given to show the applicability of the main result.
Czasopismo
Rocznik
Tom
Strony
881--895
Opis fizyczny
Bibliogr. 21 poz., rys., wzory
Twórcy
autor
- Faculty of Sciences of Sfax, Department of Mathematics, University of Sfax, Tunisia
autor
- Preparatory Engineering Institute of Sfax, Department of Mathematics, University of Sfax, Tunisia
autor
- Preparatory Engineering Institute of Sfax, Department of Mathematics, University of Sfax, Tunisia
autor
- Faculty of Sciences of Sfax, Department of Mathematics, University of Sfax, Tunisia
Bibliografia
- [1] M. Abbaszadeh and H.J. Marquez: Nonlinear observer design for one-sided Lipschitz systems. Proceedings of the American Control Conference, Baltimore, USA, (2010), 5284-5289. DOI: 10.1109/ACC.2010.5530715
- [2] I. Akrouti and N. Echi: Global practical exponential stabilization for one-sided Lipschitz systems with time delay. Journal of Systems Science and Complexity, 35(3), (2022), 2029-2045. DOI: 10.1007/s11424-022-1061-4
- [3] H. Damak, N. Hadj Taieb and M.A. Hammami: On input-to-state practical ℎ-stability for nonlinear time-varying systems. Mediterranean Journal of Mathematics, 19(6), (2022), 1-19. DOI: 10.1007/s00009-022-02179-z
- [4] H. Damak N. Hadj Taieb and M.A. Hammami: A practical separation principle for nonlinear non autonomous systems. International Journal of Control, 96(1), (2023), 214-222. DOI: 10.1080/00207179.2021.1986640
- [5] H. Damak N. Hadj Taieb and M.A. Hammami: Input-to-state practical partial ℎ-stability of nonlinear non-autonomous systems. Circuits, Systems, and Signal Processing, 42(7), (2023), 3854-3872. DOI: 10.1007/s00034-023-02313-6
- [6] H. Damak, I. Ellouze and M.A. Hammami: A separation principle of a class of time-varying nonlinear systems. Nonlinear Dynamics and Systems Theory, 13(2), (2013), 133-143.
- [7] H. Damak, M.A. Hammami and A. Kicha: A converse theorem on practical ℎ-stability of nonlinear systems. Mediterranean Journal of Mathematics, 17(3), (2020), 1-18. DOI: 10.1007/s00009-020-01518-2
- [8] H. Damak and M.A. Hammami: Stabilization by an estimated state controller of nonlinear time-varying systems. Analysis, 43 (2023), 15-30. DOI: 10.1515/anly-2022-1050
- [9] F. Delmote, M.A. Hammami and N.E.H. Rettab: On the state estimation for nonlinear continuous-time fuzzy systems. Archives of Control Sciences, 32 (2022), 57-72. DOI: 10.24425/acs.2022.140864
- [10] I. Ellouze, M.A. Hammami and J.C. Vivalda: A separation principle for linear impulsive systems. European Journal of Control, 20(3), (2014), 105-110. DOI: 10.1016/j.ejcon.2014.02.001
- [11] G-D. Hu: Observers for one-sided Lipschitz non-linear systems. IMA Journal of Mathematical Control and Information, 23(4), (2006), 395-401. DOI: 10.1093/imamci/dni068
- [12] J. Huang, L. Yu L. and M.J. Shi: Adaptive observer design for quasi-one-sided Lipschitz nonlinear systems. Proceedings of 2017 Chinese Intelligent Systems Conference, 1 (2017), 13-22. DOI: 10.1007/978-981-10-6496-8_2
- [13] A. Jmal, O. Naifar, A. Ben Makhlouf, N. Derbel and M.A. Hammami: On observers design for nonlinear Caputo fractional-order systems. Asian Journal of Control, 20(9), (2018), 1-8. DOI: 10.1002/asjc.1645
- [14] H. Khalil: Nonlinear Systems. Third ed., Prentice-Hall, Englewood Cliffs, NJ, 2002.
- [15] C.V. Pao: On stability of non-linear differential systems. International Journal of Non-Linear Mechanics, 8, (1973), 219-238.
- [16] M. Pinto: Perturbations of asymptotically stable differential equations. Analysis, 4 (1984), 161-175. DOI: 10.1524/anly.1984.4.12.161
- [17] R. Rajamani: Observers for Lipschitz nonlinear systems. IEEE Transactions on Automatic Control, 43(3), (1998), 397-401. DOI: 10.1109/9.661604
- [18] X. Fu, Y. Kang, P. Li and P. Yu: Control for a class of stochastic mechanical systems based on the discrete-time approximate observer. Journal of Systems Science and Complexity, 32 (2019), 526-541. DOI: 10.1007/s11424-018-7296-4
- [19] W. Zhang, H.-S. Su, Y. Liang and Z.-Z. Han: Nonlinear observer design for one-sided Lipschitz systems: A linear matrix inequality approach. IET Control Theory and Applications, 6(9), (2012), 1297-1303. DOI: 10.1049/iet-cta.2011.0386
- [20] W. Zhang, H.-S. Su, Y. Liang and Z.-Z. Han: LMI-based observer design for one-sided Lipschitz nonlinear systems. Proceedings of the 30th Chinese Control Conference, Yantai, China, (2011), 256-260.
- [21] B. Zhou: Stability analysis of non-linear time-varying systems by Lyapunov functions with indefinite derivatives. IET Control Theory and Applications, 11(9), (2017), 1434-1442. DOI: 10.1049/iet-cta.2016.1538
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f63a649-c9c0-4c1a-a46b-c8da887222f3