PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential to transform decommissioned mines into pumped-storage power plants

Identyfikatory
Warianty tytułu
PL
Potencjał przekształcenia zlikwidowanych kopalń w elektrownie szczytowo-pompowe
Języki publikacji
EN
Abstrakty
EN
Progressing climate change is prompting next countries to direct their energy policy towards the renewable sources of energy. The renewable sources are characterized by instability, manifested by fluctuations of energy in the system. This situation may cause blackouts, which can be costly for the economy. To stabilize the power system, it is necessary to invest in high-quality energy storage, as exemplified by the pumped-storage power plants. At the same time in most regions of the world are located mines, among which a significant part make the plants already after a period of operation. For these plants are sought useful forms of activity, allowing to use their remaining potential. In the paper it is proposed the use the post-mining excavations as water reservoirs for the pumped-storage power plants. Literature studies were carried out in the scope of work in the said area. Then, it was estimated the energy potential of the pumped-storage power plants, located at the selected mines. The results obtained were discussed and related to the energy situation in the regions.
PL
Postępujące zmiany klimatyczne skłaniają kolejne kraje do ukierunkowania ojej polityki energetycznej na odnawialne źródła energii. Źródła odnawialne charakteryzują ię niestabi Ino · cią objawiającą się wahaniami energii w systemie. Taka sytuacja może prowadzić do przerw w do ta ie prądu, co bywa kosztowne dla gospodarki. Aby zapewnić stabilność systemu elektroenergetycznego, konieczne jest inwestowanie w wysokiej jakości magazyny energii, czego przykładem są elektrownie zczytowo-pompowe. Jednocześnie w większości regionów świata zlokalizowane są kopalnie, wśród których znaczną część stanowią zakłady już po okresie eksploatacji. Dla tych zakładów poszukuje się użytecznych form zagospodarowania, pozwalających wykorzystać ich pozostały potencjał. W artykule zaproponowano wykorzystanie wyrobisk poeksploatacyjnych jako zbiorników wodnych dla elektrowni szczytowo-pompowych. Przeprowadzone zostały studia literaturowe we wspomnianyrn z.akresie tematycznym. Następnie oszacowano potencjał energetyczny elektrowni szczytowo-pompowych, zlokalizowanych przy wybranych kopalniach. Uzyskane wyniki zostały omówione i odniesione do sytuacji energetycznej w regionach.
Wydawca
Czasopismo
Rocznik
Tom
Strony
67--74
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Politechnika Śląska
Bibliografia
  • [1] Lise W, van der Laan J. 2015. lnvestrnent needs for climate change adaptation measures of electricity power plants in the EU, Energy for Sustainable Development 28, 10-20. https://dor.org/10.1016/].esd.2015.06.003
  • [2] lPCC. 2018. Summary for Policymakers. ln: Global Warming of l.5°C. An lPCC Special Report onthe impacts of global warming of l.5°C above pre-industrial levels and related global. greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pórtner, D. Roberts, J, Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.]. Gomis, E. Lonnoy, Maycock, M. Tignor, and T. Waterfield (eds.)]. World Meteorological Organization, Geneva, Switzerland, 32 pp. https://www.ipcc.ch/srl 5/chapter/spm/
  • [3] Kobayakawa T, Kandpal TC. 2016. Optimal resource integration in decentralized renewable Energy system: Assessment of the existing system and simulation for its expansion, Energy for Sustainable Development 34, 20-29. https://doi.org/10.1016/j.esd.2016.06.006
  • [4] Adeoye O, Spataru C. 2018. Sustainable development of the West African Power Pool: Increasing solar energy integration and regional electricity trade, Energy for Sustainable Development 45, 124-134. https://doi.org/10.1016/j.esd.2018.05.007
  • [5] Castro R., Crispim J. 2018. Variability and correlation of renewable energy sources in the Portuguese electrical system, Energy for Sustainable Development 42, 64-76. https://doi.org/10.1016/j.esd.2017.10.005
  • [6] Beaudin M, Zareipour H, Schellenberglabe A, Roshart W. 2010. Energy storage for mitigating the variability of renewable electricity sources: An updated review, Energy for Sustainable Development 14, 302-314. https://doi.org/10.1016/j.esd.2010.09.007
  • [7] Barszcz T., d’Obyrm K., Korbiel T. 2022. Eksperymentalna podziemna elektrownia szczytowo pompowa UPSH, Rynek Energii, 1(158), s. 56-61
  • [8] Adamkowski A., Lewandowski M., Lewandowski S., Cicholski W., Młodzikowski K., Gołębiewski G. 2018. Optymalizacja wytwarzania energii w wieloblokowych elektrowniach wodnych według kryterium sprawnościowego, Rynek Energii 1(134), 5. 32-39
  • [9] Harza RD. 1960. Hydro and pumped storage for peaking, Power Eng., Vol. 64 (10) 79-82
  • [10] Žgrggsen KE. 1969. Underground reservoirs: pumped storage of the future? Civil Engineering, vol. 39 (3),
  • [11] Wamock JG, Willett DC. 1973. Underground reservoirs for high-head pumped-storage stations, Water Power, vol. 25, no. 3, 81-87
  • [12] Allen AE. 1977. Potential for conventional and underground pumped-storage, IEEE Trans. Power Appariti- Syst., vol. PAS—96, no. 3, 993—998
  • [13] Scott FM. 1977. Underground hydroelectric pumped storage: A practical option, Energy, vol. l (l), 21—22R.
  • [14] Chiu HH, Rodgers LW, Saleem ZA, Ahluwalia RK, Kartsounes GT, Ahrens FW. 1979. Mechanical Energy storage systems: Compressed air and Underground pumped hydro, J. Energy, vol.3 (3), 131-139 -
  • [15] Tam SW, Blomquist CA, Kartsounes GT. 1979. Underground pumped hydro storage — An overview, Energy Sources, vol.4 (4), 329-351
  • [16] Davidson BJ, Glendenning 1, Harman RD, Hart AB, Mofiitt RD, Newman VG, Smith TF, Worthington PJ. Wright JK. 1980. Large-scale electrical energy storage, Inst. Electr. Eng. Proc., vol. 127(6), pt. A, 345-385
  • [17] Willett DC Wamock JG. 1983 The evolution of the technical opportunity Undeground pumped hydro storage, Underground Space, vol.7 (6), 347-352
  • [18] Coates MS. 1983. Subsurface geological considerations in siting an underground pumped-hydro project, J. Energy, vol.7 (6), 557-563
  • [19] Willett DC. 1976. Underground pumped storage research priorities, Technical planning study AF-182 (TPS Z11618) prepared by Acres American, Inc., Buffalo, NY for the Electric Power Research Institute, Palo Alto, CA
  • [20] Willett DC. 1981. Preliminary design study of underground pumped hydro and compressed-air Energy storage in hard rock. Vol.1: Executive summary, Technical planning study EM-1589 prepared by Acres American, lrc., Buffalo, NY for the Electric Power Research Institute, Palo Alto, CA
  • [21] Dames and Moore. 1981. An assessment of hydroelectric pumped storage. National hydroelectric power resources study. The U.S. Army Engineer Institute for water resources, A-95-96 .
  • [22] Hydro Review Worldwide 2007. https://www.hydroworld.com/articles/2007/05/us-developer-renews-plan-for-mount-hope-pumped-storage.html (access on: 10.05.2019)
  • [23] Menćndez J, Loredo J, Fernandez M, Galdo M. 2018. Underground Pumped-Storage Hydro Power Plants With Mine Water in Abandoned Coal Mines, Mine Water and Circular Economy, 6-13
  • [24] Menéndez J, Femandez-Oro JM, Galdo M, Loredo J. 2019. Pumped-storage hydropower plants with underground reservoir: Influence of air pressure on the efficiency of the Francis turbine and energy production, Renewable Energy 143, 1427-1438. https://doi.org/10.1016/j.renene.2019.05.099
  • [25] Menéndez J, Loredo J, Galdo M, Femandez-Oro JM. 2019. Energy storage in underground coal mines in NW Spain: Assessment of an underground lower water reservoir and preliminary energy balance, Renewable Energy 134, 1381-1391. https://doi.org/10.1016/j.renene.2018.09.042
  • [26] Menéndez J, Ordéfiez A, Alvarez R, Loredo J. 2019. Energy from closed mines: Underground Energy storage and geothermal applications, Renewable and Sustainable Energy Reviews 108, 498-512. https://doi.org/10.1016/j.rser.2019.04.007
  • [27] Morabito A., Spriet J., Vagnoni E., Hendrick P. 2020. Underground Pumped Storage Hydropower Case Studies in Belgium: Perspectives and Challenges, Energies, 13(15), 4000, DOI:https://doi.org/10.3390/en13154000
  • [28] AF-Estivo 2010. Brief Description of the Muuga Seawater-Pumped Hydro Accumulation Power Plant,Project ENE 1001
  • [29] Crawley G.M. 2017. Energy storage, World Scientific Series in Current Energy Issues (Book 4), ISBN-10:9813208953
  • [30] Niemann A, Balmes JP, Schreiber U, Wagner HJ, Fredrich T. 2018. Proposed Underground Pumped Hydro Storage Power Plant at Prosper-Haniel Colliery in Bottrop - State of Play and Prospects, Mining Report Glūckauf 154(3), 214-223
  • [31] Meyer F. 2013. Storing wind energy underground, Project info no. 18, BINE Information Service, FIZ Karlsruhe '
  • [32] Brūcker C., PreuBe A. 2020. The future of underground spatial planning and the resulting potential risks „from the point of view of mining subsidence engineering, International Journal of Mining Science and Technology, Vol.30, Issue 1, p. 93-98, DO: https://doi.org/10.1016/j.ijmst.2019.12.013
  • [33] Pujades E, Willems T, Bodeux S, Orban P, Dassargues A. 2016. Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow, Hydrology Journal vol. 24 (6), 1531-1546. https://doi.org/10.1007/310040-016—1413-z
  • [34] Pujades E, Orban P, Bodeux S, Archambeau P, Erpicum S, Dassargues A. 2017. Underground pumped storage hydropower plants using open pit mines: How do groundwater exchanges influence the efficiency? Applied Energy, Vol. 190, 135-146. https://doi.org/10.1016/j.apenergy.2016.12.093
  • [35] Northland Power. 2019. http://northlandpower.com/ (access on 19.07.2019)
  • [36] Pickard W.F. 2012. The history, present state and future prospects of underground pumped hydro for [massive energy storage, Proceeding ofthe IEEE, Vol.100, No.2, pp. 473-483
  • [37] Top 10 Largest Open Pit Mines in the World. Global Mining. 2015. https:l/www.miningglobal.com/top-10/photos-top-10-largest—open-pit-mines-world (access on: 05.08.20] 9)
  • [38] Wagner H-J, Mathur J. 2011. Introduction to Hydro Energy Systems. Basics, Technology and Operation, Springer. https://doi.org/ 10. 1007/978-3-642-20709-9
  • [39] Global Energy Observatory. 2019. http://globalenergyobservatory.org/list.php?db=PowerP1ants&type=Hydro (access on: 05.08.2019)
  • [40] List of pumped-storage hydroelectric power stations. 2017.https://ipfs.io/ipfs/QmXoypizj W3 WknFiJnKLwHCnL72vedikDDP1mXWo6uco/wiki/List_of_pumped-storage_hydroelectric_power_stations.html#cite_note-63 (access on 05.08.2019)
  • [41] Country Analisis Brief: Rusia. 2017. U. Enrgy lnformation Administration https://www.eia.gnoavy/b eta/international/analysis_ includes/countries _long/Russia/russia.pdf (access on: 05.08.2019)
  • [42] Electricity Dornestic Consumption, Global Energy Statistical Yearbook 2019. Enerdata.https://yearbook.enerdata.net/electricity/el~ctnc1ty-dorne~t1c-consurnpt10n-data.htrn l (acces_on: 05.08.2019)
  • [43] Lanshina TA, ,,Skip" Laitner JA, Potashnikov VY, Ban~ova Y_ A. 2018. The slow expan 10n of renewable energy in Russia: Cornpetitiveness and regulat1on 1ssue , nergy Pol 1c 120, 600-609. https://doi.org/1 O. I O 16/j.enpol.2018.05.052 . .
  • [44] Renewables in Electricity Production, Global Energy~ tat1 t1c_al Yearbook 2019. Enerdata. https:/ /yearbook.enerdata.net/renewables/renewable-m-electnc1ty-production- hare.htrn I (acces on: 05.08.2019)
  • [45] Kenning T. 2019. Hevel plans Russia's largest solar-plu - torage Y tern, nergy torage ews. https://www.energy-storage.news/news/hevel-plans-russia -large t-solar-plu - torage- tern (access on: 05.08.2019)
  • [46] Slav I. 2017. Russia to becorne a leader In energy torage, U A Today. https://eu.usatoday.corn/story/rnoney/2017/ 10/09/russia-becorne-leader-energy-storage/74 I 16300 I/ (access on 05.08.2019)
  • [47] Generation capacity and peak dernand. 2018. Au trafia~ nerg Regulator. https ://www.aer.gov .au/wholesale- markets/wholesale-statistics/generation-capac1 t -and-peak-d mand (access on: 05.08.2019)
  • [48] Departrnent of the Environment and Energy. 20 I 7. Au tralian nerg tati tie . Table O. https://www.energy.gov.au/sites/default/files/aes-table-o-2016-17_2017.pdf (acce on: 05.08.2019)
  • [49] Winter package 2019. https://ec.europa.eu/energy/topic /energ - trategy/clean-energy-alleuropeans_ en#docurnents (access on: 11.07.2019)
  • [50] Paska J ., Surma T. 2017. ,,Pakiet zimowy" komisji europejskiej a kierunki i realizacja polityki energetycznej do 2030 roku, Rynek Energii, 2(129), s. 21-28
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f6021e7-3544-498a-a84c-d80e03dfbb08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.