Identyfikatory
Warianty tytułu
Badania dokładności i powtarzalności pozycjonowania robota przemysłowego w środowiskach off i online
Języki publikacji
Abstrakty
The paper discusses issues concerning the accuracy and repeatability tests of the positioning of the Kuka KR 16-2 industrial robot. The results of laboratory tests of an industrial robot, as well as a comparison of robot motion paths in the Robcad environment with the real robot motion paths are presented. In order to register movement paths in the laboratory conditions, the laser tracker Faro Vantage was used. Frequent necessity to correct programs of industrial robots created in the offline environment, is a results, among others, from the insufficient experience of people who carry out programming, the environment in which robots work and the parameters of the robots themselves, and therefore their accuracy and repeatability. It is connected with the extension of the start-up time and high costs. The work describes the measurement method and attempts to determine the influence of the type of route and motion parameters on the accuracy and repeatability of robot. The accuracy of mapping of simulated robot motion in a virtual environment was also verified.
W pracy omówiono zagadnienia dotyczące badań dokładności i powtarzalności pozycjonowania robota przemysłowego Kuka KR 16-2. Przedstawiono wyniki badań laboratoryjnych robota przemysłowego, a także dokonano porównania ścieżek ruchu robota symulowanego w środowisku Robcad ze ścieżkami ruchu robota rzeczywistego. W celu rejestracji ścieżek ruchu w warunkach laboratoryjnych zastosowano laserowy tracker Faro Vantage. Częsta konieczność poprawy programów robotów przemysłowych utworzonych w środowisku offline wiąże się z wydłużeniem czasu uruchomienia i dużymi kosztami. W artykule opisano metodę pomiarów oraz podjęto próbę określenia wpływu rodzaju ścieżki dojazdu do punktów pomiarowych i parametrów ruchu na dokładność i powtarzalność pozycjonowania robota. Zweryfikowano także dokładność odwzorowania ruchu robota symulowanego w środowisku wirtualnym.
Czasopismo
Rocznik
Tom
Strony
455--464
Opis fizyczny
Bibliogr. 28 poz., rys. kolor.
Twórcy
autor
- Institute of Engineering Processes Automation and Integrated Manufacturing Systems Faculty of Mechanical Engineering Silesian University of Technology ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
- ProPoint SP. Z O.O. SP. K. [Ltd.] ul. Bojkowska 37R, 44-100 Gliwice, Poland
Bibliografia
- 1. Banaś W, Herbuś K, Kost G, Nierychlok A, Ociepka P, Reclik D. Simulation of the Stewart platform carried out using the Siemens NX and NI LabVIEW programs. Advanced Materials Research 2014; 837(1): 537-542.
- 2. Bocian M, Jamroziak K, Kulisiewicz M. An identification of nonlinear dissipative properties of constructional materials at dynamical impact loads conditions. Meccanica 2014; 49(8): 1955-1965, https://doi.org/10.1007/s11012-014-9931-z.
- 3. Brink J, Hinds B, Haney A. Robotics repeatability and accuracy: another approach. Texas Journal of Science 2004; 56 (2): 149–156.
- 4. Buchacz A, Płaczek M, Wróbel A. Modelling of passive vibration damping using piezoelectric transducers – the mathematical model. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2014; 16 (2): 301–306.
- 5. Cholewa A, Świder J, Zbilski A. Verification of forward kinematics of the numerical and analytical model of Fanuc AM100iB robot. IOP Conf. Ser.: Mater. Sci. Eng. 2016; 145(1): 052001, https://doi.org/10.1088/1757-899X/145/5/052001.
- 6. Conrad K L, Shiakolas P S, Yih T C. Robotic calibration issues: accuracy, repeatability and calibration. Proceedings of the 8th Mediterranean Conference on Control & Automation (MED 2000), Rio, Patras, GREECE, 17-19 July 2000.
- 7. Du G, Zhang P. Online robot calibration based on vision measurement. Robotics and Computer-Integrated Manufacturing 2013; 29 (1): 484–492, https://doi.org/10.1016/j.rcim.2013.05.003.
- 8. Dymarek A, Dzitkowski T, Herbuś K, Kost G, Ociepka P. Geometric analysis of motions exercised by the Stewart platform. Advanced Materials Research 2014; 837(1): 351-356.
- 9. Gürsel A, Bijan S. A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing. Mechanism and Machine Theory 2005; 40 (8): 879–906, https://doi.org/10.1016/j.mechmachtheory.2004.12.012.
- 10. Herbuś K, Kost G, Reclik D, Świder J. Integration of a virtual 3D model of a robot manipulator with its tangible model (phantom). Advanced Materials Research 2104; 837(1): 582-587.
- 11. Jamroziak K, Bocian M, Kulisiewicz M. Energy consumption in mechanical systems using a certain nonlinear degenerate model. Journal of Theoretical and Applied Mechanics 2013; 51 (4): 827-835.
- 12. Kluz R, Trzepieciński T. The repeatability positioning analysis of the industrial robot arm. Assembly 2014; 34 (3): 285–295, https://doi.org/10.1108/AA-07-2013-070.
- 13. Płaczek M. Conception of the system for traffic measurements based on piezoelectric foils. IOP Conf. Series: Materials Science and Engineering 2016; 145 (1): 042025, https://doi.org/10.1088/1757-899X/145/4/042025.
- 14. Mayer J R, Parker R, Graham A. A Portable Instrument for 3-D Dynamic Robot Measurements Using Triangulation and Laser Tracking. IEEE Transactions on Robotics and Automation 1994; 10 (4): 504–516, https://doi.org/10.1109/70.313100.
- 15. Motta J M, Carvalho G C, McMaster R S. Robot calibration using a 3D vision-based measurement system with a single camera. Robotics and Computer Integrated Manufacturing 2001; 17 (1): 487–497, https://doi.org/10.1016/S0736-5845(01)00024-2.
- 16. Nubiola A, Bonev I A. Absolute robot calibration with a single telescoping ballbar. Precision Engineering 2014; 38 (1): 472–480, https://doi.org/10.1016/j.precisioneng.2014.01.001.
- 17. Nubiola A, Bonev I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robotics and Computer-Integrated Manufacturing 2013; 29 (1): 236–245, https://doi.org/10.1016/j.rcim.2012.06.004.
- 18. Płaczek M, Buchacz A, Wróbel A. Use of piezoelectric foils as tools for structural health monitoring of freight cars during exploitation. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2015; 17 (3): 443–449, https://doi.org/10.17531/ein.2015.3.16.
- 19. Shiakolas P S, Conrad K L, Yih T C. On the accuracy, repeatability, and degree of influence of kinematics parameters for industrial robots. International Journal of Modelling and Simulation 2002; 22 (3): 1–10, https://doi.org/10.1080/02286203.2002.11442246.
- 20. Shirinzadeh B, Teoh P L, Tian Y, Dalvand M M, Zhong Y, Liaw HC. Laser interferometry-based guidance methodology for high precision positioning of mechanisms and robots. Robotics and Computer-Integrated Manufacturing 2010; 26 (1): 74–82, https://doi.org/10.1016/j.rcim.2009.04.002.
- 21. Şirinterlikçi A, Tiryakioğlu M, Bird A, Harris A, Kweder K. Repeatability and accuracy of an industrial robot: laboratory experience for a design of experiments course. The Technology Interface Journal 2009; 9 (2): 1-10.
- 22. Spong M W, Vidyasagar M. Robot Dynamics and Control, Wiley, 1989.
- 23. Weichert F, Bachmann D, Rudak B, Fisseler D. Analysis of the Accuracy and Robustness of the Leap Motion Controller. Sensors 2013; 13(5): 6380-6393, https://doi.org/10.3390/s130506380.
- 24. Wiśniewski M. Proposed method for measuring the accuracy and repeatability of positioning of industrial robots in industrial conditions. Technologia i Automatyzacja Montazu 2014; 3 (1): 39–43 (In Polish).
- 25. Wiśniewski M. Research of precision and repeatability of industrial robots. Poznań University of Technology Publishing House, 2015, Poznań.
- 26. Young K, Pickin C G. Accuracy assessment of the modern industrial robot. Industrial Robot: An International Journal 2000; 27 (6): 427-436, https://doi.org/10.1108/01439910010378851.
- 27. PN-EN 9283:2003.
- 28. www.factory-metrology.faro.com/pl/kalibracja-robotow (Access: 06.08.2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f5a6221-9efe-470b-a2fa-513a29f80dbb