PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of geometry on mechanical properties of Ti6Al4V ELI scaffolds manufactured using additive manufacturing technology

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Owing to the possibility of direct processing of CAD models into three-dimensional objects, additive manufacturing (AM) is widely used in the production of individualized bone scaffolds that can lead to perfect restoration of anatomical structures of missing bone tissues. In this work, one of the AM technologies was applied, referred to as Electron Beam Melting (EBM), using Ti6Al4V ELI alloy to produce open-cell structures. Scaffold architecture influences its mechanical properties and is important from the point of view of biological considerations. To optimize mechanical properties, designed geometries were subjected to Finite Element Method analysis and experimental static compression tests. Also, geometric CT analysis of manufactured scaffolds was carried out (geometry deviations up to ± 300 µm). Obtained results have shown that AM can be used to produce Ti6Al4V ELI alloy scaffolds displaying mechanical parameters similar to those of bone tissue (E = 0.45–2.88 MPa). The EBM process affects the microstructure and macrostructural properties of manufactured parts, e.g., through internal porosities present in the material by to unmelted powder particles (internal porosity in range of 1.25–2.25%). To assess the quality and suitability of additively manufactured implants, a multidimensional verification of the impact of the manufacturing process on the properties of the final product was performed.
Rocznik
Strony
144--156
Opis fizyczny
Bibliogr. 43 poz., rys., wykr.
Twórcy
  • Centre for Advanced Manufacturing Technologies (CAMT/ FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50‑371 Wrocław, Poland
  • Centre for Advanced Manufacturing Technologies (CAMT/ FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50‑371 Wrocław, Poland
  • Centre for Advanced Manufacturing Technologies (CAMT/ FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50‑371 Wrocław, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
  • Centre for Advanced Manufacturing Technologies (CAMT/ FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Łukasiewicza 5, 50‑371 Wrocław, Poland
Bibliografia
  • [1] Wallach JC, Gibson LJ. Mechanical behavior of a three-dimensional truss material. Int J Solids Struct. 2001;38:7181–96. https ://doi.org/10.1016/S0020 -7683(00)00400 -5.
  • [2] Gümrük R, Mines RAW. Compressive behaviour of stainless steel micro-lattice structures. Int J Mech Sci. 2013;68:125–39. https ://doi.org/10.1016/j.ijmec sci.2013.01.006.
  • [3] Vigliotti A, Pasini D. Stiffness and strength of tridimensional periodic lattices. Comput Methods Appl Mech Eng. 2012;229–232:27–43. https ://doi.org/10.1016/j.cma.2012.03.018.
  • [4] Meyers MA, Chen PY, Lin AYM, Seki Y. Biological materials: Structure and mechanical properties. Prog Mater Sci. 2008;53:1–206. https ://doi.org/10.1016/j.pmats ci.2007.05.002.
  • [5] Basalah A, Shanjani Y, Esmaeili S, Toyserkani E. Characterizations of additive manufactured porous titanium implants. J Biomed Mater Res Part B Appl Biomater. 2012;100B:1970–9. https ://doi.org/10.1002/jbm.b.32764 .
  • [6] Szymczyk P, Ziółkowski G, Junka A, Chlebus E. Application of Ti6Al7Nb alloy for the manufacture of biomechanical functional structures (BFS) for custom-made bone implants. Materials (Basel). 2018;11:1–16. https ://doi.org/10.3390/ma110 60971 .
  • [7] Pawlak A, Szymczyk P, Ziolkowski G, Chlebus E, Dybala B. Fabrication of microscaffolds from Ti-6Al-7Nb alloy by SLM. Rapid Prototyp J. 2015;21:393–401. https ://doi.org/10.1108/RPJ-10-2013-0101.
  • [8] Murr LE, Amato KN, Li SJ, Tian YX, Cheng XY, Gaytan SM, Martinez E, Shindo PW, Medina F, Wicker RB. Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J Mech Behav Biomed Mater. 2011;4:1396–411. https ://doi.org/10.1016/j.jmbbm .2011.05.010.
  • [9] Ren D, Li S, Wang H, Hou W, Hao Y, Jin W, Yang R, Misra RDK, Murr LE. Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique. J Mater Sci Technol. 2019;35:285–94. https ://doi.org/10.1016/j.jmst.2018.09.066.
  • [10] Sidambe AT. Biocompatibility of advanced manufactured titanium implants-a review. Materials (Basel). 2014;7:8168–88. https ://doi.org/10.3390/ma712 8168.
  • [11] Parthasarathy J, Starly B, Raman S, Christensen A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with elektron beam melting (EBM). J Mech Behav Biomed Mater. 2010;3:249–59. https ://doi.org/10.1016/j.jmbbm .2009.10.006.
  • [12] Benzing J, Hrabe N, Quinn T, White R, Rentz R, Ahlfors M. Hot isostatic pressing (HIP) to achieve isotropic microstructure and retain as-built strength in an additive manufacturing titanium alloy (Ti-6Al-4V). Mater Lett. 2019;257:126690. https ://doi.org/10.1016/j.matle t.2019.12669 0.
  • [13] An J, Teoh JEM, Suntornnond R, Chua CK. Design and 3D printing of scaffolds and tissues. Engineering. 2015;1:261–8. https ://doi.org/10.15302 /J-ENG-20150 61.
  • [14] Boccaccio A, Messina A, Pappalettere C, Scaraggi M. Finite element modelling of bone tissue scaffolds. Cambridge: Woodhead Publishing Limited; 2014. https ://doi.org/10.1533/97808 57096739.4.485.
  • [15] Boccaccio A, Uva AE, Fiorentino M, Mori G, Monno G. Geometry design optimization of functionally graded scaffolds for bone tissue engineering: a mechanobiological approach. PLoS ONE One. 2016. https ://doi.org/10.1371/journ al.pone.01469 35.
  • [16] Alberich-Bayarri A, Moratal D, Ivirico JLE, Hernandez JCR, Valles-Lluch A, Marti-Bonmati L, Estelles J, Mano JF, Pradas MM, Ribelles JL, Salmeron-Sanchez M. Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. J Biomed Mater Res - Part B Appl Biomater. 2009;91:191–202. https ://doi.org/10.1002/jbm.b.31389 .
  • [17] Jaecques SVN, Van Oosterwyck H, Muraru L, Van Cleynenbreugel T, De Smet E, Wevers M, Naert I, Vander Sloten J. Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone. Biomaterials. 2004;25:1683–96. https ://doi.org/10.1016/S0142-9612(03)00516 -7.
  • [18] Ziolkowski G, Szymczyk P, Dybala B, Chlebus E, Pawlak A. Geometric characteristics of scaffolds made by additive manufacturing. Powder Metall Met Ceram. 2015;54:136–9. https ://doi.org/10.1007/s1110 6-015-9690-y.
  • [19] Ziółkowski G, Chlebus E, Szymczyk P, Kurzac J. Application of X-ray CT method for discontinuity and porosity detection in 316L stainless steel parts produced with SLM technology. Arch Civ Mech Eng. 2014;14:608–14. https ://doi.org/10.1016/j.acme.2014.02.003.
  • [20] Zhang K, Fan Y, Dunne N, Li X. Effect of microporosity on scaffolds for bone tissue engineering, Regen. Biomater. 2018. https ://doi.org/10.1093/rb/rby00 1.
  • [21] Velasco MA, Lancheros Y, Garzón-Alvarado DA. Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system. J Comput Des Eng. 2016;3:385–97. https ://doi.org/10.1016/j.jcde.2016.06.006.
  • [22] Montazerian H, Davoodi E, Asadi-Eydivand M, Kadkhodapour J, Solati-Hashjin M. Porous scaffold internal architecture design based on minimal surfaces: a compromise between permeability and elastic properties. Mater Des. 2017;126:98–114. https ://doi.org/10.1016/j.matde s.2017.04.009.
  • [23] Kuboki Y, Takita H, Kobayashi D, Tsuruga E, Inoue M, Murata M, Nagai N, Dohi Y, Ohgushi H. BMP-Induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. J Biomed Mater Res. 1998;39:190–9. https ://doi.org/10.1002/(SICI)1097-4636(19980 2)39:2%3c190 :AID-JBM4%3e3.0.CO;2-K.
  • [24] Franco J, Hunger P, Launey ME, Tomsia AP, Saiz E. Direct write assembly of calcium phosphate scaffolds using a waterbased hydrogel. Acta Biomater. 2010;6:218–28. https ://doi.org/10.1016/J.ACTBI O.2009.06.031.
  • [25] Hoppe V, Szymczyk P, Madeja M. Influence of scanning strategy on geometrical accuracy and mechanical properties of electron beam-melted Ti6Al4V scaffolds. In: Wysoczański T (ed) Nauk. Badania i Doniesienia Nauk. 2018-Nauk. Tech. i Ścisłe, 2018; pp 40–50. http://www.konferencja-eurek a.pl/asset s/docs/nauki -techniczne -i-scisle-2.pdf. Accessed 20 Jan 2019.
  • [26] Safdar A, He HZ, Wei LY, Snis A, Chavez De Paz LE. Effect of process parameters settings and thickness on surface roughness of EBM produced Ti-6Al-4V. Rapid Prototyp J. 2012;18:401–8. https ://doi.org/10.1108/13552 54121 12503 91.
  • [27] Sugiura T, Yamamoto K, Horita S, Murakami K, Kirita T. Micromotion analysis of different implant configuration, bone density, and crestal cortical bone thickness in immediately loaded mandibular full-arch implant restorations: a nonlinear finite element study. Clin Implant Dent Relat Res. 2018;20:43–9. https ://doi.org/10.1111/cid.12573 .
  • [28] Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14:595–608. https ://doi.org/10.1016/8756-3282(93)90081 -K.
  • [29] E. Arrieta, Comprehensive finite element modeling of Ti-6Al-4V cellular solids fabricated by electron beam melting. 2017; https ://searc h.proqu est.com/openv iew/51759 f648d 55a23 17dd4 acbb1 eb3f2 f3. Accessed 18 Dec 2018.
  • [30] Vo TH, Museau M, Vignat F, Villeneuve F, Ledoux Y, Ballu A. Typology of geometrical defects in Electron Beam Melting. Procedia CIRP. 2018;75:92–7. https ://doi.org/10.1016/j.procir.2018.04.033.
  • [31] Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater. 2008;4:535–43. https ://doi.org/10.1016/j.actbi o.2007.12.002.
  • [32] Kasemo B, Lausmaa J. Aspects of surface physics on titanium implants. Swed Dent J Suppl. (1985); 28:19–36. https ://www.ncbi.nlm.nih.gov/pubme d/39040 61. Accessed 15 Nov 2018.
  • [33] Anselme K, Bigerelle M. Statistical demonstration of the relative effect of surface chemistry and roughness on human osteoblast short-term adhesion. J Mater Sci Mater Med. 2006;17:471–9. https ://doi.org/10.1007/s1085 6-006-8475-8.
  • [34] Zareidoost A, Yousefpour M, Ghaseme B, Amanzadeh A. The relationship of surface roughness and cell response of chemical surface modification of titanium. J Mater Sci Mater Med. 2012;23:1479–88. https ://doi.org/10.1007/s1085 6-012-4611-9.
  • [35] Nouri A, Hodgson PD, Wen CE. Biomimetic porous titanium scaffolds for orthopedic and dental applications. Biomimetics Learn Nat. 2010. https ://doi.org/10.5772/8787.
  • [36] Byrne DP, Lacroix D, Planell JA, Kelly DJ, Prendergast PJ. Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: application of mechanobiological models in tissue engineering. Biomaterials. 2007;28:5544–54. https ://doi.org/10.1016/J.BIOMA TERIA LS.2007.09.003.
  • [37] Sandino C, Checa S, Prendergast PJ, Lacroix D. Simulation of angiogenesis and cell differentiation in a CaP scaffold subjected to compressive strains using a lattice modeling approach. Biomaterials. 2010;31:2446–522. https ://doi.org/10.1016/j.bioma terials.2009.11.063.
  • [38] Roy ME, Rho JY, Tsui TY, Evans ND, Pharr GM. Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone. J Biomed Mater Res. 1999;44:191–7. https ://doi.org/10.1002/(SICI)1097-4636(19990 2)44:2%3c191:AID-JBM9%3e3.0.CO;2-G.
  • [39] Cheng XY, Li SJ, Murr LE, Zhang ZB, Hao YL, Yang R, Medina F, Wicker RB. Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting. J Mech Behav Biomed Mater. 2012; 153–162. https ://ac.els-cdn.com/S1751 61611 20026 39/1-s2.0-S1751 61611 20026 39-main.pdf?_tid=01a5f 002-878e-4ab8-a3f7-88a14 8b912 f0&acdnat=15446 96874 bd4c0 d54ec 56b6a 72a03 a1829 bad1a 6d. Accessed13 Dec 2018.
  • [40] Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127–41. https ://doi.org/10.1016/J.BIOMA TERIA LS.2016.01.012.
  • [41] Li X, Wang C, Zhang W, Li Y. Fabrication and compressive properties of Ti6Al4V implant with honeycomb-like structure for biomedical applications. Rapid Prototyp J. 2010;16:44–9. https ://doi.org/10.1108/13552 54101 10117 03.
  • [42] Ataee A, Li Y, Fraser D, Song G, Wen C. Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater Des. 2018;137:345–54. https://doi.org/10.1016/j.matde s.2017.10.040.
  • [43] Arrieta E, Mireles J, Stewart C, Carrasco C, Wicker RB. Multiscale Analysis of cellular solids fabricated by EBM. In: Solid freeform fabrication 2017: proceedings of the 28th annual international solid freeform fabrication symposium – an additive manufacturing conference. 2017; pp 2066–2101. https ://sffsy mposium.engr.utexa s.edu/sites /defau lt/files /2017/Manus cript s/Multiscale Analy sisof Cellu larSo lidsF abric ated.pdf. Accessed 15 Dec 2018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f577a90-3f1e-4c45-b78e-cc9e2ef905f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.