PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thin-layer drying of sawdust mixture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Drying behaviour of sawdust mixture was investigated in a convective dryer at 0.01 m/s and 25, 60, and 150°C air temperature. Sawdust mixture (60% of spruce and 40% of the second ingredient: beech, willow, ash, alder) and sawdust of spruce, beech, willow, alder and ash was used in the drying experiments. The sawdust mixture drying was affected by the drying of its ingredients. The experimental drying data were fitted to the theoretical, semi–theoretical, and empirical thin-layer models. The accuracies of the models were measured using the correlation coefficient, root mean square error, and reduced chi–square. All semi-theoretical and empirical models described the drying characteristics of sawdust mixture satisfactorily. The theoretical model of a sphere predicts the drying of sawdust mixture better than the theoretical model of an infinite plane. The effect of the composition of the sawdust mixture on the drying models parameters were also taken into account.
Słowa kluczowe
Rocznik
Strony
65--70
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Warsaw University of Life Sciences, Faculty of Production Engineering, ul. Nowoursynowska 164, 02–787 Warszawa, Poland
autor
  • Warsaw University of Life Sciences, Faculty of Production Engineering, ul. Nowoursynowska 164, 02–787 Warszawa, Poland
autor
  • Warsaw University of Life Sciences, Faculty of Production Engineering, ul. Nowoursynowska 164, 02–787 Warszawa, Poland
  • Warsaw University of Life Sciences, Faculty of Production Engineering, ul. Nowoursynowska 164, 02–787 Warszawa, Poland
Bibliografia
  • 1. Prokkola, H., Kuokkanen, M., Kuokkanen, T. & Lassi, U. (2014). Chemical study of wood chip drying: biodegradation of organic pollutants in condensate waters from the drying process. Bioresources 9(3), 3761–3778. DOI: 10.15376/biores.9.3.3761-3778.
  • 2. Zanuncio, A.J.V., Monteiro, T.C., Lima, J.T., Andrade, H.B. & Carvalho, A.G. (2013). Drying biomass for energy use of Eucalypts urophylla and Corymbia citrodora Logs. Bioresources 8(4), 5159–5168. DOI: 10.15376/biores.8.4.5159-5168.
  • 3. Santis-Espinosa, L.F., Perez-Sarinana, B.Y., Guerrero,-Fajardo, C.A., Saldana-Trinidad, S. & Lopez-Vidana, E.C. (2015). Drying mango (Mangifera indica L.) with solar energy as a pretreatment for bioethanol production. Bioresources 10(3), 6044–6054. DOI: 10.15376/biores.10.3.6044-6054.
  • 4. Gigler, J.K., van Loon, W.K.P. & Sonneveld, C. (2004). Experiment and modelling of parameters influencing natural wind drying of willow chunks. Biomass Bioenerg 26(6), 507–514. DOI: 10.1016/j.biombioe.2003.09.004.
  • 5. He, Z., Yang, F., Peng, Y. & Yi, S. (2013). Ultrasound-assisted vacuum drying of wood: Effect on drying time and product quality. Bioresources 8(1), 855–863. DOI: 10.15376/biores.8.1.855-863.
  • 6. Dincer, I. (1998). Moisture transfer analysis during drying of slab woods. Heat Mass Trans. 34(4), 317–320. DOI: 10.1007/s002310050265.
  • 7. Gigler, J.K., van Loon, W.K.P., van den Berg, J.V., Sonneveld, C. & Meerdink, G. (2000). Natural wind drying of willow stems. Biomass Bioenerg 19(3), 153–163. DOI: 10.1016/S0961-9534(00)00029-5.
  • 8. Weres, J., Olek, W. & Guzenda, R. (2000). Identification of mathematical model coefficients in the analysis of the heat and mass transport in wood. Dry Technol. 18(8), 1697–1708. DOI: 10.1080/07373930008917807.
  • 9. ASAE (American Society of Agricultural Engineers) (1994). Moisture measurements – forages, ASAE Standards, S358.2 DEC93.
  • 10. Pabis, S., Jayas, D.S. & Cenkowski, S. (1998). Grain drying. Theory and practice. New York, USA. John Wiley & Sons, Inc.
  • 11. Sarvestani, F.S., Rahini, R. & Hatamipur, M.S. (2014). An experimental study on drying characteristics and kinetics of figs (Ficus carica). Pol. J. Chem. Technol. 16(4), 60–64. DOI: 10.2478/pjct-2014-0071.
  • 12. Crank, J. (1975). The mathematics of diffusion. 2nd Ed. Oxford, Clarendon Press.
  • 13. Lewis, W.K. (1921). The rate of drying of solid materials. J. Ind. Eng. Chem. 13(5), 427–432. DOI: 10.1021/ie50137a021.
  • 14. Henderson, S.M. & Pabis, S. (1961). Grain drying theory. I. Temperature effect on drying coefficient. J. Agr. Eng. Res. 6(3), 169–174.
  • 15. Yagcioglu, A, Degirmencioglu, A. & Cagatay, F. (1999). Drying characteristics of laurel leaves under different drying conditions. In: Proceedings of the 7th International congress on agricultural mechanization and energy. Adana, Turkey, 26–27 May, 565–569.
  • 16. Henderson, S.M. (1974). Progress in developing the thin–layer drying equation. T ASAE 17(6), 1167–1168. DOI: 10.13031/2013.37052.
  • 17. Noomhorm, A. & Verma, L.R. (1986). A generalized single – layer rice drying model. ASAE Paper No: 86–3057, ASAE St. Joseph, Mi.
  • 18. Karathanos, V.T. (1999). Determination of water content of dried fruits by drying kinetics. J. Food. Eng. 39(4), 337–344. DOI: 10.1016/S0260-8774(98)00132-0.
  • 19. Sharaf–Eldeen, Y.I., Blaisdell, J.L. & Hamdy, M.Y. (1980). A model for ear corn drying. T ASAE, 23(5), 1261–1265. DOI: 10.13031/2013.34757.
  • 20. Verma, L.R., Bucklin, R.A., Endan, J.B. & Wratten, F.T. (1985). Effect of drying air parameters on rice drying models. T ASAE 28(1), 296–301. DOI: 10.13031/2013.32245.
  • 21. Page, G.E. (1949). Factors influencing the maximum rates of air drying shelled corn in thin layers. MSc Thesis, Purdue University.
  • 22. Kaleta, A., Górnicki, K., Winiczenko, R. & Chojnacka, A. (2013). Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer. Energ. Convers. Manag. 67(12), 179–185. DOI: 10.1016/j.enconman.2012.11.011.
  • 23. Hii, C.L., Law, C.L. & Cloke, M. (2008). Modelling of thin layer drying kinetics of cocoa beans during artificial and natural drying. J. Food Sci. Technol. 3(1), 1–10.
  • 24. Overhults, D.G., White, H.E., Hamilton, H.E. & Ross, I.J. (1973). Drying soybean with heated air. T ASAE 16(1), 112–113. DOI: 10.13031/2013.37459.
  • 25. Ademiluyi, T., Oboho, E.O. & Owudogu, M. (2008). Investigation into the thin layer drying models of Nigerian popcorn varieties. Leonardo Electr. J. Pract. Technol. 13, 47–62.
  • 26. Demir, V., Gunhan, T. & Yagcioglu, A.K. (2007). Mathematical modelling of convection drying of green table olives. Biosyst Eng 98(1), 47–53. DOI: 10.1016/j.biosystemseng.2007.06.011.
  • 27. Wang, C.Y. & Singh, R.P. (1978). A single layer drying equation for rough rice. ASAE Paper No: 78–3001, ASAE St. Joseph, Mi.
  • 28. Midilli, A, Kucuk, H. & Yapar, Z. (2002). A new model for single–layer drying. Dry Technol. 20(7), 1503–1513. DOI: 10.1081/DRT-120005864.
  • 29. STATISTICA (data analysis software system) (2011). version 10. StatSoft, Inc. www.statsoft.com
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f5065d0-02aa-49a1-b3fb-37f663fe40c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.