Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the work, multi-criteria optimization of phononic structures was performed to minimize the transmission in the frequency range of acoustic waves, eliminate high transmission peaks with a small half-width inside of the band gap, and what was the most important part of the work – to minimize the number of layers in the structure. Two types of the genetic algorithm were compared in the study. The first one was characterized by a constant number of layers (GACL) of the phononic structure of each individual in each population. Then, the algorithm was run for a different number of layers, as a result of which the structures with the best value of the objective function were determined. In the second version of the algorithm, individuals in populations had a variable number of layers (GAVL) which required a different type of target function and crossover procedure. The transmission for quasi-one-dimensional phononic structures was determined with the use of the transfer matrix method algorithm. Based on the research, it can be concluded that the developed GAVL algorithm with an appropriately selected objective function achieved optimal solutions in a much smaller number of iterations than the GACL algorithm, and the value of the k parameter below 1 leads to faster achievement of the optimal structure.
Rocznik
Tom
Strony
art. no. e139394
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Faculty of Mechanical Engineering and Computer Science, Department of Mechanics and Fundamentals of Machinery Design, Czestochowa University of Technology, Dąbrowskiego 73, 42-201 Czestochowa, Poland
autor
- Faculty of Mechanical Engineering and Computer Science, Department of Mechanics and Fundamentals of Machinery Design, Czestochowa University of Technology, Dąbrowskiego 73, 42-201 Czestochowa, Poland
autor
- Faculty of Mechanical Engineering and Computer Science, Department of Computer Science, Czestochowa University of Technology, Dąbrowskiego 73, 42-201 Czestochowa, Poland
autor
- Faculty of Production Engineering and Materials Technology, Department of Physics, Czestochowa University of Technology, Armii Krajowej 19, 42-201 Czestochowa, Poland
Bibliografia
- [1] Y. Pennec, B. Djafari-Rouhani, H. Larabi, J. Vasseur, and A.-C. Hladky-Hennion, “Phononic crystals and manipulation of sound”, Phys. Status Solidi C, vol. 6, no. 9, pp. 2080–2085, Sep. 2009, doi: 10.1002/pssc.200881760.
- [2] Y.F. Li, F. Meng, S. Li, B. Jia, S. Zhou, and X. Huang, “Designing broad phononic band gaps for in-plane modes”, Phys. Lett. A, vol. 382, no. 10, pp. 679–684, Mar. 2018, doi: 10.1016/j.physleta.2017.12.050.
- [3] W. Elmadih, W.P. Syam, I. Maskery, D. Chronopoulos, and R. Leach, “Multidimensional Phononic Bandgaps in Three-Dimensional Lattices for Additive Manufacturing”, Materials, vol. 12, no. 11, p. 1878, Jun. 2019, doi: 10.3390/ma12111878.
- [4] S. Garus and W. Sochacki, “High-performance quasi one-dimensional mirrors of mechanical waves built of periodic and aperiodic structures”, J. Appl. Math. Comput. Mech., vol. 17, no. 4, pp. 19–24, Dec. 2018, doi: 10.17512/jamcm.2018.4.03.
- [5] Z. Zhang, X.K. Han, and G.M. Ji, “Mechanism for controlling the band gap and the flat band in three-component phononic crystals”, J. Phys. Chem. Solids, vol. 123, pp. 235–241, Dec. 2018, doi: 10.1016/j.jpcs.2018.08.012.
- [6] Y. Sun et al., “Band gap and experimental study in phononic crystals with super-cell structure”, Results Phys., vol. 13, p. 102200, Jun. 2019, doi: 10.1016/j.rinp.2019.102200.
- [7] A.H. Safavi-Naeini, J.T. Hill, S. Meenehan, J. Chan, S. Gröblacher, and O. Painter, “Two-Dimensional Phononic-Photonic Band Gap Optomechanical Crystal Cavity”, Phys. Rev. Lett., vol. 112, no. 15, p. 153603, Apr. 2014, doi: 10.1103/PhysRevLett.112.153603.
- [8] W. Sochacki, “Transmission Properties of Phononical Dodecagonal Filter”, Acta Phys. Pol. A, vol. 138, no. 2, pp. 328–331, Aug. 2020, doi: 10.12693/APhysPolA.138.328.
- [9] H. Fan, B. Xia, L. Tong, S. Zheng, and D. Yu, “Elastic Higher-Order Topological Insulator with Topologically Protected Corner States”, Phys. Rev. Lett., vol. 122, no. 20, p. 204301, May 2019, doi: 10.1103/PhysRevLett.122.204301.
- [10] M. P. Bendsøe and O. Sigmund, Topology Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
- [11] O. Sigmund and J. Søndergaard Jensen, “Systematic design of phononic band–gap materials and structures by topology optimization”, Philos. Trans. R. Soc. London, Ser. A, vol. 361, no. 1806, pp. 1001–1019, May 2003, doi: 10.1098/rsta.2003.1177.
- [12] L. Xie, B. Xia, J. Liu, G. Huang, and J. Lei, “An improved fast plane wave expansion method for topology optimization of phononic crystals”, Int. J. Mech. Sci., vol. 120, pp. 171–181, Jan. 2017, doi: 10.1016/j.ijmecsci.2016.11.023.
- [13] Zhong Hui-Lin, Wu Fu-Gen, and Yao Li-Ning, “Application of genetic algorithm in optimization of band gap of two-dimensional phononic crystals”, Acta. Phys. Sin., vol. 55, no. 1, p. 275, 2006, doi: 10.7498/aps.55.275
- [14] Z. Liu, B. Wu, and C. He, “Band-gap optimization of two-dimensional phononic crystals based on genetic algorithm and FPWE”, Waves Random Complex Media, vol. 24, no. 3, pp. 286–305, Jul. 2014, doi: 10.1080/17455030. 2014.901582.
- [15] X. Huang and Y.M. Xie, “Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials”, Comput. Mech., vol. 43, no. 3, pp. 393–401, Feb. 2009, doi: 10.1007/s00466-008-0312-0.
- [16] H.-W. Dong, X.-X. Su, Y.-S. Wang, and C. Zhang, “Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm”, Struct. Multidisc. Optim., vol. 50, no. 4, pp. 593–604, Oct. 2014, doi: 10.1007/s00158-014-1070-6.
- [17] Y. Li, X. Huang, and S. Zhou, “Topological Design of Cellular Phononic Band Gap Crystals”, Materials, vol. 9, no. 3, p. 186, Mar. 2016, doi: 10.3390/ma9030186.
- [18] G.A. Gazonas, D.S. Weile, R. Wildman, and A. Mohan, “Genetic algorithm optimization of phononic bandgap structures”, Int. J. Solids Struct., vol. 43, no. 18–19, pp. 5851–5866, Sep. 2006, doi: 10.1016/j.ijsolstr.2005. 12.002.
- [19] M.I. Hussein, K. Hamza, G.M. Hulbert, R.A. Scott, and K. Saitou, “Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics”, Struct. Multidisc. Optim., vol. 31, no. 1, pp. 60–75, Jan. 2006, doi: 10.1007/s00158-005-0555-8.
- [20] K.L. Manktelow, M.J. Leamy, and M. Ruzzene, “Topology design and optimization of nonlinear periodic materials”, J. Mech. Phys. Solids, vol. 61, no. 12, pp. 2433–2453, Dec. 2013, doi: 10.1016/j.jmps.2013.07.009.
- [21] S. Hedayatrasa, M. Kersemans, K. Abhary, M. Uddin, J.K. Guest, and W. Van Paepegem, “Maximizing bandgap width and in-plane stiffness of porous phononic plates for tailoring flexural guided waves: Topology optimization and experimental validation”, Mech. Mater., vol. 105, pp. 188–203, Feb. 2017, doi: 10.1016/j.mechmat.2016.12.003.
- [22] L. Chen, Y. Guo, and H. Yi, “Optimization study of bandgaps properties for two-dimensional chiral phononic crystals base on lightweight design”, Phys. Lett. A, vol. 388, p. 127054, Feb. 2021, doi: 10.1016/j.physleta.2020.127054.
- [23] X.K. Han and Z. Zhang, “Bandgap design of three-phase phononic crystal by topological optimization”, Wave Motion, vol. 93, p. 102496, Mar. 2020, doi: 10.1016/j.wavemoti.2019.102496.
- [24] S. Garus and W. Sochacki, “Structure optimization of quasi one-dimensional acoustic filters with the use of a genetic algorithm”, Wave Motion, vol. 98, p. 102645, Nov. 2020, doi: 10.1016/j.wavemoti.2020.102645.
- [25] Y. Chen, F. Meng, G. Sun, G. Li, and X. Huang, “Topological design of phononic crystals for unidirectional acoustic transmission”, J. Sound Vib., vol. 410, pp. 103–123, Dec. 2017, doi: 10.1016/j.jsv.2017.08.015.
- [26] X.K. Han and Z. Zhang, “Topological Optimization of Phononic Crystal Thin Plate by a Genetic Algorithm”, Sci. Rep., vol. 9, no. 1, p. 8331, Dec. 2019, doi: 10.1038/s41598-019-44850-8.
- [27] Ł. Chruszczyk, “Genetic minimisation of peak-to-peak level of a complex multi-tone signal”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 3, pp. 621–629, 2019, doi: 10.24425/BPASTS.2019.129660.
- [28] M. Beniyel, M. Sivapragash, S.C. Vettivel, P. Senthil Kumar, K.K. Ajith Kumar, and K. Niranjan, “Optimization of tribology parameters of AZ91D magnesium alloy in dry sliding condition using response surface methodology and genetic algorithm”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, p. e135835, 2021, doi: 10.24425/BPASTS.2021.135835.
- [29] O. Dazel, J.-P. Groby, B. Brouard, and C. Potel, “A stable method to model the acoustic response of multilayered structures”, J. Appl. Phys., vol. 113, no. 8, p. 083506, Feb. 2013, doi: 10.1063/1.4790629.
- [30] S. Garus, W. Sochacki, and M. Bold, “Comparison of phononic structures with piezoelectric 0.62Pb(Mg1/3Nb1/3)O3-0.38PbTiO3 defect layers”, in Proc. Engineering Mechanics 2018, Svratka, Czech Republic, May 2018, pp. 229–232, doi: 10.21495/ 91-8-229.
- [31] M.M. Sigalas and C.M. Soukoulis, “Elastic-wave propagation through disordered and/or absorptive layered systems”, Phys. Rev. B, vol. 51, no. 5, pp. 2780–2789, Feb. 1995, doi: 10.1103/PhysRevB.51.2780.
- [32] P.-G. Luan and Z. Ye, “Acoustic wave propagation in a one-dimensional layered system”, Phys. Rev. E, vol. 63, no. 6, p. 066611, May 2001, doi: 10.1103/PhysRevE.63.066611.
- [33] M.-I. Pop and N. Cretu, “Intrinsic transfer matrix method and split quaternion formalism for multilayer media”, Wave Motion, vol. 65, pp. 105–111, Sep. 2016, doi: 10.1016/j.wavemoti.2016.04.011.
- [34] S. Yang, W.-D. Yu, and N. Pan, “Band structure in two-dimensional fiber–air photonic crystals”, Physica B, vol. 406, no. 4, pp. 963–966, Feb. 2011, doi: 10.1016/j.physb.2010.12.039.
- [35] M. Fukuhara, X. Wang, and A. Inoue, “Acoustic analysis of the amorphous phase of annealed Zr55Cu30Ni5Al10 glassy alloy, using diffracted SH ultrasonic waves”, J. Non-Cryst. Solids, vol. 356, no. 33–34, pp. 1707–1710, Jul. 2010, doi: 10.1016/j.jnoncrysol.2010.06.025.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f4a487f-6a35-471b-90b1-20d18a93115b