PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the critical parameters for the onset of dynamic recrystallization (DRX) in advanced ultra-high strength steels (A-UHSS) microalloyed with boron

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wyznaczanie krytycznych parametrów dla rozpoczęcia rekrystalizacji dynamicznej (DRX) i zaawansowanych stalach o podwyższonej wytrzymałości z dodatkiem boru
Języki publikacji
EN
Abstrakty
EN
In this research work, the double differentiation mathematical method was used to identify more accurately the critical stress (σc) and critical strain (εc) associated with the onset of dynamic recrystallization (DRX), which is based on changes of the strain hardening rate (θ=δσ/δε) as a function of the flow stress (Poliak and Jonas method, simplified by Najafizadeh and Jonas). For this purpose, a low carbon advanced ultra-high strength steel (A-UHSS) microalloyed with different amounts of boron (0, 14, 33, 82, 126 and 214 ppm) was deformed by uniaxial hot-compression tests at high temperatures (950, 1000, 1050 and 1100°C) and constant true strain rates (10-3, 10-2 and 10-1s-1). Results indicate that both σc and εc increase with decreasing deformation temperature and increasing strain rate. On the other hand, these critical parameters tend to decrease as boron content increases. Such a behavior is attributed to a solute drag effect by boron atoms on the austenitic grain boundaries and also to a solid solution softening effect.
PL
Matematyczna metoda podwójnego różniczkowania została zastosowana dla dokładniejszej identyfikacji krytycznego naprężenia σc i krytycznego odkształcenia εc. związanego z rozpoczęciem rekrystalizacji dynamicznej (DRX). Te dwa parametry są związane z prędkością umocnienia θ=δσ/δε przedstawianą jako funkcja naprężenia uplastyczniającego (metoda Poliaka i Jonasa, uproszczona przez Najafizadeha i Jonasa). W tym celu niskowęglową stal o wysokiej wytrzymałości (ang. advanced ultra-high strength steel -AUHSS) wzbogacono różnymi zawartościami boru (0, 14, 33, 82, 126 i 214 ppm). Tą stal poddano odkształceniom plastycznym w wysokich temperaturach (950, 1000, 1050 i 1100°C przy stałych prędkościach odkształcenia (10-3, 10-2 and 10-1s-1). Otrzymane wyniki wykazały, że zarówno σc jak i εc rośnie wraz z obniżeniem się temperatury odkształcenia i wzrostem prędkości odkształcenia. Z drugiej strony, te krytyczne parametry zmniejszają się gdy wzrasta zawartość boru w stali. Jako przyczynę takiego zachowania uznano wpływ atomów boru w roztworze na granice ziaren austenitu a także wpływ mięknięcia roztworowego.
Wydawca
Rocznik
Strony
152--162
Opis fizyczny
Bibliogr. 48 poz., rys.
Twórcy
  • Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio "U", Ciudad Universitaria, 58066 - Morelia, Michoacán, México
  • Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio "U", Ciudad Universitaria, 58066 - Morelia, Michoacán, México
  • Departament de Ciencia deis Materials i Enginyeria Metallúrgica, ETSEIB - Universität Politécnica de Catalunya, Av. Diagonal 647, 08028 - Barcelona, Spain
  • Fundado CTM Centre Tecnológic, Av. de las Bases de Manresa, 1, 08240 — Manresa, Spain
Bibliografia
  • Aust, K.T., Hanneman, R.E., Niesssscn, P., Westbrook, J.H., 1968, Solute-Induced Hardening near Grain Boundaries in Zone-Refined Metals, Acta Metall, 16, 291-302.
  • Aust, K.T., Westbrook, J.H., in: Cotterill, R.M.J., Doyama, M., Jackson, J.J., Meshii, M., 1965, Lattice Defects in Quenched Metals, Academic Press, New York, 771-776.
  • Baker, I. Schulson, E.M., 1988, The Effect of Boron on the Chemistry of Grain Boundaries in Stoichiometric Ni3Al, Philosophical Magazine, 57, 379-385.
  • Cabrera, J.M., Prado, J.M., Barron, M.A., 1999, An Inverse analysis of the Hot Uniaxial Compression test by means of the Finite Element Method, Steel Res., 70, 59-66.
  • Elwazri, A.M., Wanjara, P., Yue, S., 2004, Dynamic Recrystalization of Austenite in Microalloycd High Carbon Steels, Mater. Sci. Technol., 20, 1469-1473.
  • Gornostyrev, Y.N., Katsnelson, M.I., Stroev, A.Y., Trefilov, A.V., 2005, Impurity-kink interaction in the two-dimensional Frenkel-Kontorova model, Phys. Rev. B: Condens. Matter, 71, 094105, 1-7.
  • He, X.L., Djahazi, M., Jonas, J.J., Jackman, J., 1991, The Non-equilibrium of Boron During the Recrystallization of Nb-treated HSLA Steels, Acta Metall. Mater., 39, 2295-2308.
  • Hondros, E.D., Seah, M.P., 1977, Segregation in Interfaces, Review. Int. Met. Rev., 222, 262-301.
  • Humphreys, F.J., Hatherly, M., 2004, Recrystallization and Related Annealing Phenomena, Second ed., Elsevier Science, New York.
  • Jrfari, M., Najafizadeh, A., 2008, Comparison between the Methods of Determining the Critical Stress for Initiation of Dynamic Recrystallization in 316 Stainless Steel, J.Mater. Sci. Technol., 24, 840-844.
  • Jahazi, M., Jonas, J.J., 2002, The Non-equilibrium Segregation of Boron on Original and Moving Austenite Grain Boundaries, Mater. Sci. Eng. A, 335, 49-61.
  • Jonas, J.J., 1994, Dynamic Recrystallization Cientific Curiosity or Industrial Tool?, Mater. Sci. Eng. A,\U, 155-165.
  • Karjalainen, L.P., Maccagno, T.M., Jonas, J.J., 1995, Softening and Flow-Stress Behavior of Nb Microalloyed Steels During Hot-Rolling Simulation, ISIJ Int., 35, 1523-1531.
  • Kim, ST., Choi, S.H., Lee, Y., 2005, Influence of Phosphorous and Boron on Dynamic Recrystallization and Microstructures of Hot-Rolled Interstitial Free Steel, Mater. Sci. Eng. A, 406, 125-133.
  • Lagerquist, M., Lagneborg, R., 1972, The Influence of Boron on the Creep Properties of Austenitic Stainless Steel, Scand.J. Metall., 1,81-89.
  • Le Bon, A., Rofes-Vernis, J., Rossard, C, 1973, Recrystallization and precipitation induced by high temperature deformation-Case of a weldable construction steel containing niobium, Mem. Sci. Rev. Met., 70, 57-588.
  • Lopez Chipres, E., Mejia, I., Maldonado, C, Bedolla Jacuinde, A., Cabrera, J.M., 2007, Hot Ductility Behavior of Boron Microalloyed Steels, Mater. Sci. Eng. A, 460-461, 464-470.
  • Lopez Chipres, E., Mejia, I., Maldonado, C, Bedolla Jacuinde, A. El-Wahabi, M., Cabrera, J.M., 2008, Hot Flow Behavior of Boron Microalloyed Steels, Mater. Sci. Eng. A, 480, 49-55.
  • Luton, M.J., Sellars, CM., 1969, Dynamic Recrystallization in Nickel and Nickel-Iron Alloys during High Temperature Deformation, Acta Metallurgica, 17, 1033-1043.
  • Medina, S.F., Hernandez, C.A., 1996, General Expression of the Zener-Hollomon Parameter as a Function of the Chemical Composition of Low Alloy and Microalloyed Steels, Acta Mater., 44, 137-148.
  • Mejia, I., Lopez Chipres, E., Maldonado, C, Bedolla Jacuinde, A., Cabrera., J.M., 2008, Modeling of the Hot Deformation Behavior of Boron Microalloyed Steels Under Uniaxial Hot Compression Conditions, Int. J. Mater. Res. (formerly Z. Metallkd.), 99, 1336-1345.
  • Mejia, I., Maldonado, C, Bedolla Jacuinde, A., Cabrera., J.M., 2011, Determination of the Critical Conditions for the Initiation of Dynamic Recrystallization in Boron Micro-alloyed Steels, Mater. Sci. Eng. A, 528, 4133-4140.
  • Meyer, L., Strasburger, C, Schneider, C, 1985, Effect and Present Application of the Microalloying Elements Nb, V, Ti, Zr and B in HSLA Steels, Proc. of HSLA'85, Beijing, China, ASM-International, 29-39,
  • Mirzadeh, H., Najafizadeh, A., 2010, Prediction of the Critical Conditions for Initiation of Dynamic Recrystallization, Mater. Des., 31, 1174-1179.
  • Mirzadeh, H., Cabrera, J.M., Prado, J.M., Najafizadeh, A., 2011, Hot Deformation Behavior of a Medium Carbon Microalloyed Steel, Mater. Sci. Eng. A, 528, 3876-3882.
  • Misra, R.D.K., Weatherly, G.C., Hartmann, J.E., Boucek, A.J., 2001, Ultrahigh Strength Hot Rolled Microalloyed Steels: Microstructural Aspects of Development, Mater. Sci. Technol, 17, 1119-1129.
  • Najafizadeh, A., Jonas, J.J., 2006, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 46, 1679-1684.
  • Okazaki, K., 1996, Solid-Solution Hardening and Softening in Binary Iron-Alloys, J. Mater. Sci., 31, 1087-1099.
  • Opbroek, E.G., 2009, International Iron & Steel Institute, Committee on Automotive Applications, Advanced High Strength Steel Application Guidelines, Brussels.
  • Poliak, E.I., Jonas, J.J., 1996, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 44, 127-136.
  • Poliak, E.I., Jonas, J.J., 2003a, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, ISIJ Int., A3, 684-691.
  • Poliak, E.I., Jonas, J.J., 2003b, Critical Strain for Dynamic Recrystallization in Variable Strain Rate Hot Deformation, ISIJ Int., 43, 692-700.
  • Petukhov, B.V., 2007, Effect of Solid-Solution Softening of Crystalline Materials: Review, Crystallography Reports, 52, 112-122.
  • Roberts, W., 1982, in: Krauss, G. (ed.), Deformation, Processing and Structure, ASM, Metals Park, OH., 109-184.
  • Ryan, N.D., McQueen, H.J., 1990, Dynamic Softening Mechanisms in 304 Austenitic Stainless Steel, Can. Metall., Q 29, 147-162.
  • Sah, J.P., Richardson, G.J., Sellars, CM., 1974, Grain-Size Effects During Dynamic Recrystallization of Nickel, Met. Sei., 8, 325-331.
  • Sakai, T., Jonas, J.J., 1984, Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metallurgica, 32, 189-209.
  • Schulson, E.M., Weihs, T.P., Viens, D.V., Baker, I., 1985, The effect of Grain size on the Yield Strength of Ni3Al, Acta Metallurgica. 33, 1587-1591.
  • Sellars, CM., McG Tegart, W.J., 1966, La Relation Entre la Résistence et la Structure Dans la Deformation a Chaud, Mem. Sei. Rev. Met, 63 (9), 731-746.
  • Serajzadeh, S., Taheri, A.K., 2003, An Investigation into the Effect of Carbon on the Kinetics of Dynamic Restoration and Flow Behavior of Carbon Steels, Mechanics of Materials, 35, 653-660.
  • Shaban, M., Eghbali, B., 2010, Determination of Critical Condi-tions for Dynamic Recrystallization of a Microalloyed Steel, Mater. Sei. Eng. A, 527, 4320-4325.
  • Siciliano Jr, F., Jonas, J.J., 2000, Mathematical Modeling of the Hot Strip Rolling of Microalloyed Nb, Multiply-Alloyed Cr-Mo, and Plain C-Mn Steels, Metall. Mater. Trans. A, 31,511-530.
  • Song, S.H., Guo, A.M., Shen, D.D., Yuan, Z.X., Liu, J., Xu, T.D., 2003, Effect of Boron on the Hot Ductility of 2.25CrlMo Steel, Mater. Sei. Eng. A, 360, 96-100.
  • Sun, W.P., Hawbolt, E.B., 1997, Comparison between Static and Metadynamic Recrystallization An Application to the Hot-Rolling of Steels, ISIJ Int., 37, 1000-1009.
  • Xu, Z., Zhang, G-R., Sakai, T., 1995, Effect of Carbon Content on Static Restoration of Hot Worked Plain Carbon Steels, ISIJ Int., 35, 210-216.
  • Wang, X.M., He., X.L., 2002, Effect on Boron Addition on Structure and Properties of Low Carbon Bainitic Steels, ISIJ Int., 42, 38-46.
  • Wray, P. J., 1982, Effect of Carbon Content on the Plastic Flow of Plain Carbon Steels at Elevated Temperatures, Metall. Mater. Trans. A, 13, 125-134.
  • Wray, P.J., 1984, Effect of Composition and Initial Grain Size on the Dynamic Recrystallization of Austenite in Plain Carbon Steels, Metall. Mater. Trans. A, 15, 2009-2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f48c312-4143-4a2f-8d14-ef9705ca4526
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.