PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved current regulators for sensorless synchronous reluctance motor

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Ulepszone regulatory prądu dla bezczujnikowego synchronicznego silnika reluktancyjnego
Języki publikacji
EN
Abstrakty
EN
To achieve rapid response, good tracking performance and high efficiency, different types of control strategies have been adopted for synchronous reluctance motors (SynRMs). In this paper, a new approach to rotor speed estimation of a sensorless reluctance synchronous motor is proposed. It consists of replacing the conventional PI current controller with that based on model predictive control (MPC) using the adaptive model reference estimator (MRAS) upstream. The stator current and speed are first estimated by the MRAS technique and then injected into the MPC block to calculate the reference voltage vector (RVV). This new approach which takes into account all the mechanical and electrical variables in a control law via a new cost function allows to obtain the signals switched to the power converter. The overall system is implemented in MATLAB/SIMULINK.
PL
Aby osiągnąć szybką reakcję, dobrą wydajność śledzenia i wysoką wydajność, przyjęto różne typy strategii sterowania dla synchronicznych silników reluktancyjnych (SynRM). W artykule zaproponowano nowe podejście do szacowania prędkości obrotowej wirnika bezczujnikowego reluktancyjnego silnika synchronicznego. Polega ona na zastąpieniu konwencjonalnego regulatora prądu PI regulatorem opartym na modelowym sterowaniu predykcyjnym (MPC) z wykorzystaniem adaptacyjnego estymatora odniesienia modelu (MRAS). Prąd i prędkość stojana są najpierw szacowane za pomocą techniki MRAS, a następnie wprowadzane do bloku MPC w celu obliczenia wektora napięcia odniesienia (RVV). To nowe podejście, które uwzględnia wszystkie zmienne mechaniczne i elektryczne w prawie sterowania za pomocą nowej funkcji kosztu, pozwala na uzyskanie sygnałów przełączanych do przekształtnika mocy. Cały system jest zaimplementowany w środowisku MATLAB/SIMULINK.
Rocznik
Strony
237--244
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • LEVRES Laboratory, Echahid Hamma Lakhdar University, El Oued, Algeria
  • Department of Electrical Engineering, Echahid Hamma Lakhdar University, El Oued, Algeria
  • Laboratory of Electrical Engineering, Mohamed Boudiaf University, M'sila, Algeria
Bibliografia
  • [1] Shuang, Bo., Z. Q. Zhu., Ximeng Wu., Improved cross-coupling effect compensation method for sensorless control of ipmsm with high frequency voltage injection. IEEE Transactions on Energy Conversion, 37 (2021): 347-358.
  • [2] Varatharajan, A., Pellegrino, G., Armando, E., Direct flux vector control of synchronous motor drives: Accurate decoupled control with online adaptive maximum torque per ampere and maximum torque per volts evaluation. IEEE Transactions on Industrial Electronicsm, 69 (2021) , 1235- 1243.
  • [3] Mohammed, Sadeq Ali Qasem., CHOI, Han Ho., JUNG, Jin-Woo., Improved Iterative Learning Direct Torque Control for Torque Ripple Minimization of Surface-Mounted Permanent Magnet Synchronous Motor Drives, IEEE Transactions on Industrial Informatics, (2021), vol. 17, no 11, p. 7291-7303.
  • [4] Antonello, R., Ortombina, L., Tinazzi, F. ; Zigliotto M., Advanced current control of synchronous reluctance motors, IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS), Honolulu, HI, USA, (2017), 1,037- 1,042.
  • [5] Accetta, R.A.; Cirrincione, M.; D’Ippolito, F.; Pucci, M.; Sferlazza, A., Input-Output Feedback Linearization Control with On-Line Inductances Estimation of Synchronous Reluctance Motors, IEEE Energy Conversion Congress and Exposition (ECCE) , (2021) , 4973-4978.
  • [6] Hwang, Seon-Hwan, Kim, Jang-Mok, Khang, Huynh Van, al., Parameter identification of a synchronous reluctance motor by using a synchronous PI current regulator at a standstill, Journal of Power Electronics, (2010), vol. 10, no 5, p. 491-497.
  • [7] Farhan A., Abdelrahem M., Saleh A., Shaltout A., Kennel R., High-Performance Position Sensorless control of Reluctance Synchronous Motor using High-Frequency Injection, IEEE 13th International Conference on Power Electronics and Drive Systems (PEDS), Toulouse, France, (2019), pp. 1-6.
  • [8] Altomare A., Guagnano A., Cupertino F., Naso D., Discrete-Time Control of High-Speed Salient Machines, IEEE Transactions on Industry Applications, vol. 52, no. 1, (2016), pp. 293-301.
  • [9] Lin C K., Yu J t., Lai Y S., Yu H C., Improved Model-Free Predictive Current Control for Synchronous Reluctance Motor Drives, IEEE Transactions on Industrial Electronics, vol. 63, no. 6, (2016) ,pp. 3942-3953.
  • [10] Ferdoud, S M., Garcia, Pablo, Oninda., Mohammad Abdul Moin, al., MTPA and field weakening control of synchronous reluctance motor, 9th International Conference on Electrical and Computer Engineering (ICECE), (2016). p. 598-601.
  • [11] Ghaderi A., Hanamoto T., Wide-Speed-Range Sensorless Vector Control of Synchronous Reluctance Motors Based on Extended Programmable Cascaded Low-Pass Filters, IEEE Transactions on Industrial Electronics, vol. 58, no. 6, (2011), pp. 2322-2333.
  • [12] Nguyen A T., Rafaq M S., Choi H H., Jung J W., A Model Reference Adaptive Control Based Speed Controller for a Surface-Mounted Permanent Magnet Synchronous Motor Drive, IEEE Transactions on Industrial Electronics, vol. 65, no. 12, (2018), pp. 9399-9409.
  • [13] Sugimoto H., Tamai S., Secondary Resistance Identification of an Induction-Motor Applied Model Reference Adaptive System and Its Characteristics, IEEE Transactions on Industry Applications, vol. IA-23, no. 2, (1987) ,pp. 296-303.
  • [14] Schauder C., Adaptive speed identification for vector control of induction motors without rotational transducers, IEEE Transactions on Industry Applications, vol. 28, no. 5, (1992), pp. 1054-1061.
  • [15] Joo K J., Kim I G., Lee J., Go S C., Robust Speed Sensorless Control to Estimated Error for PMa-SynRM, IEEE Transactions on Magnetics, vol. 53, (2017) , no. 6, pp. 1-4.
  • [16] Trancho, E., Ibarra, E., Arias, A.; Kortabarria, I.; Jurgens, J.; Marengo, L., Gragger, J. V., PM-assisted synchronous reluctance machine flux weakening control for EV and HEV applications, IEEE Transactions on Industrial Electronics ,65, (2017), 2986-2995.
  • [17] Clarke G M,. Burden R L,. Faires J D,. Numerical Analysis, Cengage Learning, (2012).
  • [18] Moghaddam R R., Gyllensten F., Novel High-Performance SynRM Design Method: An Easy Approach for A Complicated Rotor Topology, IEEE Transactions on Industrial Electronics, vol. 61, no. 9, (2014) , pp. 5058-5065
  • [19] Kolehmainen, J., Synchronous reluctance motor with form blocked rotor, IEEE Transactions on Energy Conversion,25, (2010) ,450-456.
  • [20] Liu, Y. C., Laghrouche, S., N'Diaye, A.; Cirrincione, M. Hermite neural network-based second-order sliding-mode control of synchronous reluctance motor drive systems, Journal of the Franklin Institute,358,(2021), 400-427.
  • [21] Peters W., Böcker J., Discrete-time design of adaptive current controller for interior permanent magnet synchronous motors (IPMSM) with high magnetic saturation, IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, (2013),pp. 6608-6613.
  • [22] Tornello, L. D., Scelba, G., Scarcella, G., Cacciato, M., Testa, A., Foti, S., Pulvirenti, M., Combined rotor-position estimation and temperature monitoring in sensorless, synchronous reluctance motor drives, IEEE Transactions on Industry Applications ,55, (2019), 3851-3862.
  • [23] Bu, Y., Wang, A., Design an Improved Sensorless Sliding Mode Observer for PMSM, In 2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS), (2020),100-104.
  • [24] Moghaddam R R., Magnussen F., Sadarangani C., A FEM1 investigation on the Synchronous Reluctance Machine rotor geometry with just one flux barrier as a guide toward the optimal barrier's shape, IEEE EUROCON, St. Petersburg, Russia, (2009), pp. 663-670.
  • [25] Boztas, Gullu., Aydogmus,Omur., Implementation of sensorless speed control of synchronous reluctance motor using extended Kalman filter, Engineering Science and Technology, an International Journal, (2022), vol. 31, p. 101066.
  • [26] Yousefi Talouki A., Pescetto P., Pellegrino G., Sensorless Direct Flux Vector Control of Synchronous Reluctance Motors Including Standstill, MTPA, and Flux Weakening, IEEE Transactions on Industry Applications, vol. 53, no. 4, (2017) , pp. 3598-3608.
  • [27] Rodriguez Jose., Patricio Cortes., Predictive control of power converters and electrical drives, John Wiley – Sons Book Company (2012)
  • [28] Farhan A., Abdelrahem M., Saleh A., Shaltout A., Kennel R., Simplified Sensorless Current Predictive Control of Synchronous Reluctance Motor Using Online Parameter Estimation, Energies, vol. 13, (2020), no. 2, p. 492.
  • [29] Carlet, Paolo Gherardo., Tinazzi, Fabio., Bolognani, Silverio., al., An effective model-free predictive current control for synchronous reluctance motor drives, IEEE Transactions on Industry Applications, vol. 55, no 4, (2019), p. 3781-3790.
  • [30] Schwenzer, M., Ay, M., Bergs, T., Abel, D., Review on model predictive control: An engineering perspective, The International Journal of Advanced Manufacturing Technology ,117 (2021), 1327-1349.
  • [31] Gao X., Abdelrahem M., Hackl C M., Zhang Z., Kennel R., Direct Predictive Speed Control With a Sliding Manifold Term for PMSM Drives, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 2, (2020) ,pp. 1258- 1267
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f43ca8c-3e54-474c-9a23-cbb0dbea7624
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.