Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
With the ongoing expansion of urban areas globally, industrial zones are increasingly integrated into city landscapes. These zones, characterised by a high density of industrial facilities from diverse sectors, can pose significant threats to the natural environment, particularly to aquatic ecosystems. This study aims to assess the influence of an urban area containing a designated industrial zone on spatio-temporal variations in river water chemistry and to identify critical zones of water quality degradation. The research was conducted on the Drwinka River, located in Niepołomice, southern Poland. Findings revealed abrupt shifts in water chemistry along the river, primarily driven by point-source wastewater discharges. Industrial activity led to a marked increase in water salinity, largely due to elevated concentrations of sodium chloride (NaCl). Additionally, wastewater introduced organic and inorganic forms of nitrogen, phosphorus, and carbon into the river, though the negative effects of these pollutants diminished downstream. This attenuation was attributed to the buffering capacity of riparian vegetation, particularly aquatic plants (hydrophytes). Seasonal changes in catchment biological activity also had a significant impact on the concentrations of biogenic elements in the river water. Overall, the study underscores the importance of riparian zones in mitigating pollution and highlights the need for careful monitoring and management of industrial discharges within urbanised catchments.
Wydawca
Czasopismo
Rocznik
Tom
Strony
90--99
Opis fizyczny
Bibliogr. 54 poz., mapa, rys., tab., wykr.
Twórcy
autor
- Jagiellonian University in Kraków, Department of Hydrology, Institute of Geography and Spatial Management, Gronostajowa St, 7, 30-387 Kraków, Poland
Bibliografia
- Banaszak-Cibicka, W. and Dylewski, Ł. (2021) “Species and functional diversity – A better understanding of the impact of urbanization on bee communities,” Science of the Total Environment, 774, 145729. Available at: https://doi.org/10.1016/j.scitotenv.2021.145729.
- Berg, S.M. et al. (2021) “Seasonal and spatial variability of dissolved carbon concentration and composition in Lake Michigan tributaries,” Journal of Geophysical Research: Biogeosciences, 126(10), e2021JG006449. Available at: https://doi.org/10.1029/2021JG006449.
- Bogdał, A. et al. (2016) “Seasonal variability of physicochemical parameters of water quality on length of Uszwica River,” Journal of Ecological Engineering, 17(1), pp. 161–170. Available at: https://doi.org/10.12911/22998993/61206.
- Briciu, A.E. et al. (2020) “Changes in the water temperature of rivers impacted by the urban heat island: Case study of Suceava city,” Water, 12(5), 1343. Available at: https://doi.org/10.3390/w12051343.
- Brysiewicz, A. et al. (2019) “Quality analysis of waters from selected small watercourses within the river basins of Odra River and Wisła River,” Rocznik Ochrona Środowiska, 21(2), pp. 1202–1216.
- Camporeale, C. et al. (2013) “Modeling the interactions between river morphodynamics and riparian vegetation,” Reviews of Geophysics, 51(3), pp. 379–414. Available at: https://doi.org/10.1002/rog.20014.
- Chen, D., Yang, K. and Wang, H. (2016) “Effects of important factors on hydrogen-based autotrophic denitrification in a bioreactor,” Desalination and Water Treatment, 57(8), pp. 3482–3488. Available at: https://doi.org/10.1080/19443994.2014.986533.
- Choi, M. et al. (2024) “Assessing sources of nutrients in small watersheds with different land-use patterns using TN, TP, and NO3-N,” Journal of Hydrology: Regional Studies, 55, 101958. Available at: https://doi.org/10.1016/j.ejrh.2024.101958.
- Duan, S. and Kaushal, S.S. (2015) “Salinization alters fluxes of bioreactive elements from stream ecosystems across land use,” Biogeosciences, 12(23), pp. 7331–7347. Available at: https://doi.org/10.5194/bg-12-7331-2015.
- Dudzińska, M., Dawidowicz, A. and Gross, M. (2023) “How does blue infrastructure affect the attractiveness rating of residential areas? Case study of Olsztyn City, Poland,” Sustainability, 15(24), 16843. Available at: https://doi.org/10.3390/su152416843.
- Exner-Kittridge, M. et al. (2016) “The seasonal dynamics of the stream sources and input flow paths of water and nitrogen of an Austrian headwater agricultural catchment,” Science of the Total Environment, 542, pp. 935–945. Available at: https://doi.org/10.1016/j.scitotenv.2015.10.151.
- Glińska-Lewczuk, K. et al. (2016) “The impact of urban areas on the water quality gradient along a lowland river,” Environmental Monitoring and Assessment, 188, pp. 1–15. Available at: https://doi.org/10.1007/s10661-016-5638-z.
- Górniak, A. (2017) “Spatial and temporal patterns of total organic carbon along the Vistula River course (Central Europe),” Applied Geochemistry, 87, pp. 93–101. Available at: https://doi.org/10.1016/j.apgeochem.2017.10.006.
- Guéguen, C. et al. (2004) “Water toxicity and metal contamination assessment of a polluted river: the Upper Vistula River (Poland),” Applied Geochemistry, 19(1), pp. 153–162. Available at: https://doi.org/10.1016/S0883-2927(03)00110-0.
- GUS (no date) Local Data Bank. Available at: https://bdl.stat.gov.pl/bdl/start (Accessed: January 23, 2025).
- Halabowski, D. et al. (2020) “Impact of the discharge of salinised coal mine waters on the structure of the macroinvertebrate communities in an urban river (Central Europe),” Water, Air, & Soil Pollution, 231, pp. 1–19. Available at: https://doi.org/10.1007/s11270-019-4373-9.
- Haq, S., Kaushal, S.S. and Duan, S. (2018) “Episodic salinization and freshwater salinization syndrome mobilize base cations, carbon, and nutrients to streams across urban regions,” Biogeochemistry, 141, pp. 463–486. Available at: https://doi.org/10.1007/s10533-018-0514-2.
- Hu, J., Zhang, J. and Li, Y. (2022) “Exploring the spatial and temporal driving mechanisms of landscape patterns on habitat quality in a city undergoing rapid urbanization based on GTWR and MGWR: The case of Nanjing, China,” Ecological Indicators, 143, 109333. Available at: https://doi.org/10.1016/j.ecolind.2022.109333.
- Jolejole, M.E. Cayetano, M.G. and Magbanua, F.S. (2021) “Responses of benthic macroinvertebrate communities in tropical Asian streams passing through an industrial zone,” Chemistry and Ecology, 37(5), pp. 399–418. Available at: https://doi.org/10.1080/02757540.2021.1888935.
- Kalu, C.M., Rauwane, M.E. and Ntushelo, K. (2021) “Microbial spectra, physiological response and bioremediation potential of Phragmites australis for agricultural production,” Frontiers in Sustainable Food Systems, 5, 696196. Available at: https://doi.org/10.3389/fsufs.2021.696196.
- Kaushal, S.S. et al. (2021) “Freshwater salinization syndrome: From emerging global problem to managing risks,” Biogeochemistry, 154, pp. 255–292. Available at: https://doi.org/10.1007/s10533-021-00784-w.
- Krodkiewska, M., Spyra, A. and Cieplok, A. (2022) “Assessment of pollution, and ecological status in rivers located in the Vistula and Oder River basins impacted by the mining industry in Central Europe (Poland),” Ecological Indicators, 144, 109505. Available at: https://doi.org/10.1016/j.ecolind.2022.109505.
- Kumwimba, M.N. et al. (2024) “Nutrient and sediment retention by riparian vegetated buffer strips: Impacts of buffer length, vegetation type, and season,” Agriculture, Ecosystems & Environment, 369, 109050. Available at: https://doi.org/10.1016/j.agee.2024.109050.
- Lenart-Boroń, A. et al. (2016) “Factors and mechanisms affecting seasonal changes in the prevalence of microbiological indicators of water quality and nutrient concentrations in waters of the Białka River catchment, southern Poland,” Water, Air, & Soil Pollution, 227, pp. 1–10. Available at: https://doi.org/10.1007/s11270-016-2931-y.
- Lenart-Boroń, A. et al. (2017) “The effect of anthropogenic pressure shown by microbiological and chemical water quality indicators on the main rivers of Podhale, southern Poland,” Environmental Science and Pollution Research, 24, pp. 12938–12948. Available at: https://doi.org/10.1007/s11356-017-8826-7.
- Liang, L. and Gong, P. (2020) “Urban and air pollution: a multicity study of long-term effects of urban landscape patterns on air quality trends,” Scientific Reports, 10(1), 18618. Available at: https://doi.org/10.1038/s41598-020-74524-9.
- Li, D. et al. (2023) “Significant dynamic disturbance of water environment quality in urban rivers flowing through industrial areas,” Water, 15(20), 3640. Available at: https://doi.org/10.3390/w15203640.
- Liu, J., Shen, Z. and Chen, L. (2018) “Assessing how spatial variations of land use pattern affect water quality across a typical urbanized watershed in Beijing, China,” Landscape and Urban Planning, 76, pp. 51–63. Available at: https://doi.org/10.1016/j.landurbplan.2018.04.006.
- Matej-Lukowicz, K. et al. (2020) “Seasonal contributions of nutrients from small urban and agricultural watersheds in northern Poland,” PeerJ, 8, e8381. Available at: https://doi.org/10.7717/peerj.8381.
- Miao, H. et al. (2024) “Nutrient removal performance and the nitrogen-sulfur conversion pathways in sulfur-iron based biofilter under acidic/alkaline conditions,” Chemical Engineering Journal, 499, 156157. Available at: https://doi.org/10.1016/j.cej.2024.156157.
- Milke, J., Gałczyńska, M. and Wróbel, J. (2020) “The importance of biological and ecological properties of Phragmites australis (Cav.) Trin. Ex Steud., in phytoremendiation of aquatic ecosystems – the review,” Water, 12(6), 1770. Available at: https://doi.org/10.3390/w12061770.
- Mokarram, M., Saber, A. and Sheykhi, V. (2020) “Effects of heavy metal contamination on river water quality due to release of industrial effluents,” Journal of Cleaner Production, 277, 123380. Available at: https://doi.org/10.1016/j.jclepro.2020.123380.
- Ouattara, N.K. et al. (2014) “Impact of wastewater release on the faecal contamination of a small urban river: The Zenne River in Brussels (Belgium),” Water, Air, & Soil Pollution, 225, 2043. Available at: https://doi.org/10.1007/s11270-014-2043-5.
- Pawlak, A. (2019) “Functional and spatial transformations of small towns in Małopolska – selected examples,” IOP Conference Series: Materials Science and Engineering, 471(11), 112061. Available at: https://doi.org/10.1088/1757-899X/471/11/112061.
- Piano, E. et al. (2020) “Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales,” Global Change Biology, 26(3), pp. 1196–1211. Available at: https://doi.org/10.1111/gcb.14934.
- PN-89 C-04638/02:1990. Bilans jonowy wody. Sposób obliczania bilansu jonowego wody [Ionic balance of water. Method for calculating the ionic balance of water]. Warszawa: Polski Komitet Normalizacyjny.
- PN-EN ISO 10304-1:2009. Jakość wody – oznaczanie rozpuszczonych anionów za pomocą chromatografii jonowej – część 1: oznaczanie bromków, chlorków, fluorków, azotanów, azotynów, fosforanów i siarczanów [Water quality – Determination of dissolved anions by ion chromatography – Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate]. Warszawa: Polski Komitet Normalizacyjny.
- PN-EN ISO 14911:2002. Jakość wody – oznaczanie Li+, Na+, NH4+, K+, Mn2+, Ca2+, Mg2+, Sr2+ i Ba2+ za pomocą chromatografii jonowej – metoda dla wód i ścieków [Water quality – Determination of Li+, Na+, NH4+, K+, Mn2+, Ca2+, Mg2+, Sr2+ and Ba2+ by ion chromatography – Method for water and wastewater analysis]. Warszawa: Polski Komitet Normalizacyjny.
- Puczko, K. and Jekatierynczuk-Rudczyk, E. (2020) “Extreme hydrometeorological events influence to water quality of small rivers in urban area: A case study in Northeast Poland,” Scientific Reports, 10(1), 10255. Available at: https://doi.org/10.1038/s41598-020-67190-4.
- Punzet, M. et al. (2012) “A global approach to assess the potential impact of climate change on stream water temperatures and related in-stream first-order decay rates,” Journal of Hydrometeorology, 13(3), pp. 1052–1065. Available at: https://doi.org/10.1175/JHM-D-11-0138.1.
- Singh, R. et al. (2025) “Assessment of industrial effluent discharges contributing to Ganga water pollution through a multivariate statistical framework: investigating the context of Indian industries,” Environmental Science and Pollution Research, pp. 1–19. Available at: https://doi.org/10.1007/s11356-024- 35823-0.
- Singh, R., Tiwari, A.K. and Singh, G.S. (2021) “Managing riparian zones for river health improvement: an integrated approach,” Landscape and ecological engineering, 17(2), pp. 195–223. Available at: https://doi.org/10.1007/s11355-020-00436-5.
- Strokal, M. et al. (2021) “Urbanization: an increasing source of multiple pollutants to rivers in the 21st century,” npj Urban Sustainability, 1(1), pp. 1–13. Available at: https://doi.org/10.1038/s42949-021-00026-w.
- Schliemann, S.A., Grevstad, N. and Brazeau, R.H. (2021) “Water quality and spatio-temporal hot spots in an effluent-dominated urban river,” Hydrological Processes, 35(1), e14001. Available at: https://doi.org/10.1002/hyp.14001.
- Trałka, M., Błachowicz, M. and Jakubiak, M. (2023) “Role of rivers in restricting pollution movement, as evidenced by chemical and isotopic research on the Widawa River in Wrocław (SW Poland),” Geochemistry, 83(3), 125975. Available at: https://doi.org/10.1016/j.chemer.2023.125975.
- Ulloa, J.S. et al. (2021) “Listening to cities during the COVID-19 lockdown: How do human activities and urbanization impact soundscapes in Colombia?” Biological Conservation, 255, 108996. Available at: https://doi.org/10.1016/j.biocon.2021.108996.
- United Nations (2019) World urbanization prospects: the 2018 revision (ST/ESA/SER.A/420). New York: United Nations, Department of Economic and Social Affairs, Population Division. Available at: https://digitallibrary.un.org/record/3833745?ln=en&v=pdf (Accessed: January 23, 2025).
- Wang, S. et al. (2016) “Ammonium nitrogen concentration in the Weihe River, central China during 2005–2015,” Environmental Earth Sciences, 75, pp. 1–10. Available at: https://doi.org/10.1007/s12665-015-5224-7.
- Xia, X. et al. (2018) “The cycle of nitrogen in river systems: sources, transformation, and flux,” Environmental Science: Processes & Impacts, 20(6), pp. 863–891. Available at: https://doi.org/10.1039/C8EM00042E.
- Xu, X. et al. (2018) “Detecting the response of bird communities and biodiversity to habitat loss and fragmentation due to urbanization,” Science of The Total Environment, 624, pp. 1561–1576. Available at: https://doi.org/10.1016/j.scitotenv.2017.12.143.
- Yang, Z. et al. (2022) “Spatiotemporal variation characteristics and source identification of water pollution: Insights from urban water system,” Ecological Indicators, 139, 108892. Available at: https://doi.org/10.1016/j.ecolind.2022.108892.
- Zan, F. et al. (2012) “A 100-year sedimentary record of natural and anthropogenic impacts on a shallow eutrophic lake, Lake Chaohu, China,” Journal of Environmental Monitoring, 14(3), pp. 804–816. Available at: https://doi.org/10.1039/C1EM10760G.
- Zhai, T. et al. (2020) “Assessing ecological risks caused by human activities in rapid urbanization coastal areas: Towards an integrated approach to determining key areas of terrestrial-oceanic ecosystems preservation and restoration,” Science of The Total Environment, 708, 135153. Available at: https://doi.org/10.1016/j.scitotenv.2019.135153.
- Zhang, Y. et al. (2021) “Suspect and target screening of emerging pesticides and their transformation products in an urban river using LC-QTOF-MS,” Science of The Total Environment, 790, 147978. Available at: https://doi.org/10.1016/j.scitotenv.2021.147978.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f43a7b2-06d7-4f35-b7ca-24a65be4bb6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.