PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Selected research issues of prototype floating systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a solution that can be used as a temporary supplement to the existing infrastructure in cases of natural disasters, during structure or bridge repair, in military applications and in areas where it is necessary to provide a floating system crossing. The genesis of the proposed structure and its development, as well as examples of applications of the basic module, referred to as the river module – the floating cassette with the pneumatic pontoon – are presented. The original solutions, such as the bow–stern modules, designed using modern, light and durable materials acting as deflectors, are also described. Examples of the use of floating structures composed of identical/repeatable modules–cassettes are shown. The results of experimental tests of two prototype river modules sets are presented as a validation for numerical studies. Selected aspects of static, kinematic and dynamic analyses using finite element and multibody simulations are presented. The numerical simulation of the prototype floating bridge with an assessment of the impact of clearances and an estimation of the kinematic parameters of the floating ribbon with various configurations are described.
Rocznik
Strony
204--211
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Institute of Mechanics and Computational Engineering, Military University of Technology, Sylwestra Kaliskiego Street 2, 00-908 Warsaw, Poland
  • Faculty of Mechanical Engineering, Institute of Mechanics and Computational Engineering, Military University of Technology, Sylwestra Kaliskiego Street 2, 00-908 Warsaw, Poland
Bibliografia
  • 1. Leqia He, Chiara Castoro, Angelo Aloisio, Zhiyong Zhang. Dynamic assessment. FE modelling and parametric updating of a butterflyarch stress-ribbon pedestrian bridge. Struct Infrastruct Eng, 2021;18(7): 1064-1075.
  • 2. Minwoo Chang, Sung Il Seo & Hyung Suk Mun. Running Safety and Behavior Tests for a Scaled-Down Railway Vehicle Crossing a Floating Bridge. KSCE J Civ Eng. 2020;24:1750–1762.
  • 3. Hornbeck B, Kluck J, Connor R. Trilateral Design and Test Code for Military Bridging and Gap-Crossing Equipment. TARDEC BRIDGING 2005. http://www.dtic.mil/dtic/tr/fulltext/u2/a476390.pdf
  • 4. STANAG 2021 Ed.8. Military Load Classification of Bridges, Ferries, Rafts and Vehicles. http://nso.nato.int/nso/nsdd/_CommonList.html]
  • 5. Derewońko A, Krasoń W. Mobile pontoon bridge and floating systems, Special Interest Group A2 (Ports and Maritime) of the World Conference on Transport Research Society (WCTRS). Antwerpia conference proceedings. 3-4 May 2018.
  • 6. EP2251255B1 2013. A sectional pontoon bridge. Military University of Technology.
  • 7. Derewońko A, Kołodziejczyk D, Golczak K, Pneumatic Air Object Application in Design Of Water Crossing. Journal of KONES.2015;19(4):155-161. DOI: 10.5604/12314005.1138333.
  • 8. Krasoń W, Sławek P. Design and pre-testing of a mobile modular floating platform with adjustable displacement. Mechanik 2017;90(11). DOI: https://doi.org/10.17814/mechanik.2017.11.185
  • 9. Krason W. Selected Problems of the Numerical Capacity Assessment for Floating Systems. Modelling in Engineering 2020: Applied Mechanics. Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1336), eBook ISBN978-3-030-68455-6. DOI https://doi.org/10.1007/978-3-030-68455-6pp. 168-180
  • 10. Xiang X et al. Viscous damping modelling of floating bridge pontoons with heaving skirt and its impact on bridge girder bending moments. The 36th International Conference on Ocean, Offshore and Arctic Engineering. June 25-30. 2017. Trondheim Norway.
  • 11. Jiachen Liu. Development of Vibration Base Health Monitoring in Bridge. Journal of Physics Conference Series 012021. September 2021. DOI:10.1088/1742-6596/2014/1/012021
  • 12. Yanlin Shao, Xu Xiang, Jianyu Liu. Numerical Investigation of Wave-Frequency Pontoon Responses of a Floating Bridge Based on Model Test Results. Conference: Proceedings of the 38th International Conference on Ocean. Offshore and Arctic Engineering. June 2019. DOI:10.1115/OMAE2019-96545
  • 13. Melcer J. Experimental Testing of a Bridge. Applied Mechanics and Materials. 2013; (486):333-340.
  • 14. Krason W, Popławski A. Numerical research of the cassette bridge joint strength with mapping of stand for experimental tests. Cite as: AIP Conference Proceedings 2078, 020050 (2019). https://doi.org/10.1063/1.5092053, Published Online: 04 March 2019, 020050 pp. 1-6.
  • 15. Krason W, Bogusz P. Strain research of side joints of floating bridge in lab bending test, Experimental Mechanics of Solids Materials Research Proceedings 12. 2019:96-103, Materials Research Forum LLC. https://doi.org/10.21741/9781644900215-14
  • 16. Krason W, Bogusz P, Popławski A, Stankiewicz M. Selected aspects of stand tests of the floating prototype bridge connector. Experimental Mechanics of Solids Materials Research Proceedings 12.2019:90-95. Materials Research Forum LLC. https://doi.org/ 10.21741/9781644900215-13
  • 17. NO-54-A203: Mosty składane. Wymagania ogólne. http://g.ekspert.infor.pl/p/_dane/akty_pdf/U23/2001/22/186.pdf
  • 18. Krason W, Kozłowski R, Derewońko A, Golczak K. Selected Aspects of Simulation of Multi-Module Mechanisms with the Use of Multibody Method. Journal of KONES.2012;19(1):207-214 DOI: 10.5604/12314005.1137359
  • 19. EP2570551B1. A cassette of a floating bridge. 2012. Military University of Technology.
  • 20. Zienkiewicz OC, Taylor L, Zhu JZ. The Finite Element Method: Its Basis and Fundamentals. Elsevier Butterworth-Heinemann. Berlin 2005.
  • 21. Fengzong Gong, Fei Han, Yingjie Wang, Ye Xia. Bridge Damping Extraction Method from Vehicle–Bridge Interaction System Using Double-Beam Mode. Appl. Sci. 2021;11(21): 10304. https://doi.org/10.3390/app112110304
  • 22. Lixia Peng, Zhiqiang Gao, Zhaoyang Ban, Feng Gao, Weiping Fu. Dynamic Tangential Contact Stiffness and Damping Model of the Solid–Liquid Interface. Machines.2022;10:804.https://doi.org/10.3390/machines10090804
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f434c1a-b1a4-466d-b599-3a865673b81d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.