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Abstract Lightweight robots (LWR) are a new generation of devices intended to be used not only for 
industrial tasks but also to perform actions in the human environment.  This work presents an analysis of 
selected basic problems related to the vibration properties of light-weight robot arms. The study of 
vibration is based on the analysis of the root locus on the plane of complex variables. It turns out that their 
distribution is non-stationary and depends on the parameters of the model (arm geometry, material 
parameters), but also depends on the type of realised motion, which is not so obvious. Depending on the 
manoeuvres conducted (acceleration / deceleration), the system may lose (or increase) its oscillating 
properties at higher frequencies, as well as introduce a structural (measurable) delay. Recognition of the 
discussed properties along with their modelling is an important element of the design process of the control 
system of modern, light-weight robots. 
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1. Introduction   

The problem of mathematical modelling of light robots is one of the most important considering the wide 
range of their applications. The diagram in Fig. 1 takes into account only those types of models that are 
related to the considered problem. We see that the degree of connection between them varies. Each group 
has many representations (subgroups), which can be seen in the example of the dynamics model. In 
addition, the remaining groups of models may have many representations, usually differing in the degree 
of complication. 
 

 
 

Figure 1. Types of mathematical models of LWR. 

The study of the LWR vibration damping process focuses on dynamics models. The problem of 
describing the dynamics of flexible structures was studied by eminent mathematicians (L. Euler), and later 
mechanics (S. Timoshenko), long before the advent of robotics. W. Book [8], who was the first to introduce 
the concept of "flexible manipulators", should be considered a precursor to research on robots with flexible 
arms. Using a complex mathematical apparatus and specialized, dedicated software, many partial problems 
were solved over a period of two decades [1-2,4], but due to the high level of complexity of such objects, 
issues remain open.  
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More and more precise representations of the models shown in Fig.1 are sought, especially dynamics 
models. The problem of determining the dynamics model begins with indicating the class of the model that 
we want to determine. Two classes of models are assumed: the first are "accurate" models, generated for 
simulation purposes. They are systems of highly non-linear ordinary or partial differential equations that 
describe the dynamics of beams or shells. When creating such a model, the aim is to approximate the real 
system as much as possible by using the most commonly known formalisms, e.g. Lagrange, in conjunction 
with a symbolic computation processor. The second class consists of "simplified" models, used at the stage 
of synthesis of control systems or visualization of the tested object. In this case, the aim is to obtain a model 
that is as simple as possible. Certain reduction and simplification methods are adopted, which lead to the 
obtaining of the dynamics model as a linear, partial differential equation of the parabolic type or its reduced 
form, i.e. a finite-dimensional system in a continuous or discrete (with respect to time) version. FEM (Finite 
Element Method) [3] models with varying levels of accuracy are also used. In analytical models, additional 
correction terms are often introduced, which bring the model spectrum closer to the real system spectrum. 

The expected quality of the model, which consists of the accuracy (as high as possible) and the level of 
complication (as low as possible), has influence on the selection of the spatial transformations used to 
describe the deformation process. 

2. Model selection - discussion 

The discussion of the choice of the model describing the deformation of the arm is one of the issues related 
to the mathematical modelling of light robots. Due to their complexity and degree of interconnection, new 
design and simulation methods are sought for such complex mechatronic systems. 

We derive the LWR dynamics equations using the Lagrange formalism and the transverse deformation 
model. The form of the model depends on the choice of a combination of movements (non-distortion 
transformations) and deformations, the result of which is the inclusion in the analysis of the corresponding 
component of kinetic and potential energy. The types of transformation and the corresponding models are 
presented in Table 2.2. The symbol "+" means that an energy component is included in the model, while the 
symbol "-" means that it is not. 

Table 1. Types of deformation and corresponding models. 

 Potential energy Kinetic energy 
Model Translation Rotation Shear Translation Rotation Shear 
Euler-Bernouli + - - + - - 
Rayleigh + - - + + - 
No-name + - + + - - 
Timoshenko + + + + + - 

 
The given table shows that it is possible to create other models that would include further "energy fixes". 
Selected types of deformation and corresponding models are presented in [5], [9] and [10]. When improving 
the model, one should remember its complexity so that it is useful in research. Table 1 corresponds to the 
potential and kinetic energies. In further considerations, we will apply simplifications in the notation of 
formulas consisting in omitting the arguments representing spatial variables and time, marking e.g. w(x, t) 
as w. 
 
2.1. Euler-Bernoulli model (EBM) 

Assuming that the distributed perpendicular force f acts on the arm, the solution of the Lagrange equation 
leads to the well-known [2] model of dynamics:  

ρA ∂2w(x,t)
∂t2 + EI ∂4w(x,t)

∂x4 = f(x, t). (1) 

The solution (1) with boundary conditions (one end clamped, the other free) is based on the separation of 
variables (we assume that w(x,t)=W(x)T(t)) and the theory of linear operators. The roots of the 
characteristic equation (for clamped-free) form an infinite sequence of two conjugated pairs: 
 

   𝑠𝑠1,2 = ∓�𝜔𝜔2 𝜌𝜌𝜌𝜌
𝐸𝐸𝐸𝐸

4    and   𝑠𝑠3,4 = ∓𝑖𝑖 �𝜔𝜔2 𝜌𝜌𝜌𝜌
𝐸𝐸𝐸𝐸

4   (2) 
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Comparing the experimental and theoretically determined modes of natural vibrations, it turns out that the 
EBM model overestimates them by (14% - 26%) for the first mode and by (78% - 133%) for the second 
mode of vibrations. The error increases at higher frequencies. For this reason, it is now used less frequently. 
 
2.2. Rayleigh model (RM) 

As mentioned in the discussion of model selection, the Rayleigh beam adds rotary inertia effects to the 
Euler-Bernoulli beam. Hence, equation (3) contains three terms on the left: 

𝐸𝐸𝐸𝐸 𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4 − 𝜌𝜌𝐸𝐸 𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2 + 𝜌𝜌𝜌𝜌 𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2 = 𝑓𝑓(𝑥𝑥, 𝑡𝑡). (3) 

By proceeding analogously to the EBM model and passing from the time form to the Laplace operator 
domain, the characteristic equation is obtained as: 

𝐸𝐸𝐸𝐸𝑠𝑠4 + 𝜌𝜌𝐸𝐸𝜔𝜔2𝑠𝑠2 − 𝜌𝜌𝜌𝜌𝜔𝜔2 = 0. (4) 
The roots of the characteristic equation (for the same boundary conditions for the EBM model) are more 
complex compared to (2) and are equal: 

𝑠𝑠1,2 = ±i�𝜌𝜌𝐸𝐸
𝜔𝜔2

2
+ 𝜔𝜔�𝐸𝐸

𝜌𝜌2𝜔𝜔2

4
+ 𝜌𝜌𝜌𝜌 

and  

  𝑠𝑠3,4 = ±�−𝜌𝜌𝐸𝐸 𝜔𝜔2

2
+ 𝜔𝜔�𝐸𝐸 𝜌𝜌2𝜔𝜔2

4
+ 𝜌𝜌𝜌𝜌. 

(5) 

The deviations from the experimental model are (1% - 7%) and (5% - 16%) for the first and second modes 
of vibration, respectively. 

2.3. Timoshenko model (TM) 

According to Table 1, the kinetic energy of the TM model is a sum of the kinetic energy for translational 
motion and rotational motion (as a result of torsional deformation and two deflections). The potential 
energy of elasticity consists of the energy of deflection and shear deformation. Assuming some 
simplifications (with respect to zero energy dissipation and generalized zero external excitation limited to 
force p and torque q), the TM model in a homogeneous form for zero inputs (distributed force p = 0, 
distributed moment q = 0) consists of two equations corresponding to the variables w(x,t)  and 𝜑𝜑(x,t): 

�
𝐸𝐸𝐸𝐸 𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥4 − �𝜌𝜌𝐸𝐸 + 𝜌𝜌
𝐺𝐺𝜌𝜌𝐴𝐴𝑠𝑠

� 𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2 + 𝜌𝜌𝜌𝜌 𝜕𝜕2𝑤𝑤

𝜕𝜕𝑡𝑡2 + 𝜌𝜌2𝐸𝐸
𝐺𝐺𝜌𝜌𝐴𝐴𝑠𝑠

𝜕𝜕4𝑤𝑤
𝜕𝜕𝑡𝑡4 = 0

𝐸𝐸𝐸𝐸 𝜕𝜕4𝜑𝜑
𝜕𝜕𝑥𝑥4 − �𝜌𝜌𝐸𝐸 + 𝜌𝜌

𝐺𝐺𝜌𝜌𝐴𝐴𝑠𝑠
� 𝜕𝜕4𝜑𝜑

𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2 + 𝜌𝜌𝜌𝜌 𝜕𝜕2𝜑𝜑
𝜕𝜕𝑡𝑡2 + 𝜌𝜌2𝐸𝐸

𝐺𝐺𝜌𝜌𝐾𝐾𝑠𝑠

𝜕𝜕4𝜑𝜑
𝜕𝜕𝑡𝑡4 = 0

. (6) 

We note that the above equations have an identical form; therefore, their solutions will be similar and 
will depend on the boundary conditions and natural vibrations. To obtain the characteristic equation, the 
variable separation should be introduced. The analysis is carried out conveniently for the dimensionless 
coordinate ξ = x / L. We assume that w(x, t)=W(ξ)𝑒𝑒𝑖𝑖𝜔𝜔𝑡𝑡 and φ(x, t)=φ(ξ) 𝑒𝑒𝑖𝑖𝜔𝜔𝑡𝑡. By inserting new variables 
into (6) we get (7) consist of two equations corresponding to the variables w(x,t) and 𝜑𝜑(x,t): 

�
𝑊𝑊
′′′′

+ �𝜌𝜌𝐸𝐸 + 𝜌𝜌
𝐺𝐺𝜌𝜌𝐴𝐴𝑠𝑠

� 𝜔𝜔2𝑊𝑊
′′

+ � 𝜌𝜌2𝐸𝐸
𝐺𝐺𝐴𝐴𝜌𝜌𝑠𝑠

𝜔𝜔4 − 𝜌𝜌𝜌𝜌𝜔𝜔2� 𝑊𝑊 = 0  

𝜙𝜙
′′′′

+ �𝜌𝜌𝐸𝐸 + 𝜌𝜌
𝐺𝐺𝜌𝜌𝐴𝐴𝑠𝑠

� 𝜔𝜔2𝜙𝜙
′′

+ � 𝜌𝜌2𝐸𝐸
𝐺𝐺𝐴𝐴𝜌𝜌𝑠𝑠

𝜔𝜔4 − 𝜌𝜌𝜌𝜌𝜔𝜔2� 𝜙𝜙 = 0 
.  (7) 

The characteristic equation has the form: 

𝐸𝐸𝐸𝐸𝑠𝑠4 + �𝜌𝜌𝐸𝐸 +
𝜌𝜌

𝐺𝐺𝜌𝜌𝐴𝐴𝑠𝑠
� 𝜔𝜔2𝑠𝑠2 + �

𝜌𝜌2𝐸𝐸
𝐺𝐺𝐴𝐴𝜌𝜌𝑠𝑠

𝜔𝜔4 − 𝜌𝜌𝜌𝜌𝜔𝜔2� = 0. (8) 

The solution (8) is the four elements grouped in pairs: 

𝑠𝑠1,2 = ∓i�𝜌𝜌 �𝜌𝜌𝐸𝐸 +
𝜌𝜌

𝐺𝐺𝜌𝜌𝐴𝐴𝑠𝑠
�

𝜔𝜔2

2
+ 𝜔𝜔��𝐸𝐸 −

1
𝐺𝐺𝜌𝜌𝐴𝐴𝑠𝑠

�
𝜌𝜌2𝜔𝜔2

4
+ 𝜌𝜌𝜌𝜌 (9) 
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and 

𝑠𝑠3,4 = ∓�−𝜌𝜌 �𝐸𝐸 + 1
𝐺𝐺𝜌𝜌𝐴𝐴𝑠𝑠

� 𝜔𝜔2

2
+ 𝜔𝜔��𝐸𝐸 − 1

𝐺𝐺𝜌𝜌𝐴𝐴𝑠𝑠
� 𝜌𝜌2𝜔𝜔2

4
+ 𝜌𝜌𝜌𝜌. (10) 

Analysing the formulas (8, 9), it is easy to notice that the first two roots will always be imaginary. On the 
other hand, the two remaining elements (formula 10) will take either real or imaginary values, depending 
on the value of the pulsation ω, the limiting value of which is 𝜔𝜔 = �𝐺𝐺𝜌𝜌𝐴𝐴𝑠𝑠 𝜌𝜌𝐸𝐸⁄ . Comparing the experimental 
and theoretically determined vibration modes, it turns out that for the TM-type models, the deviations are 
respectively: -1% to 2% for the first mode of vibration, and -1% to 6% for the second [5-6]. This is a 
significantly better result compared to the EBM model. The disadvantage of the model, however, is its 
complexity and its inability to take into account rheological properties. The complication of the model 
hinders the discretization process to such an extent that some researchers consider the RM model to be 
sufficiently accurate, when the energy dissipation is added. 

 
3. Rayleigh model with damping and axial force (RDFM) 

For low pulsations, the internal damping depends mainly on the stress level in the material and is non-
linear. Linear rheological models can be used for low and medium stresses, and such stresses occur most 
frequently during robot operation. The Kelvin-Voigt model seems to be the most useful due to its simplicity 
and sufficient accuracy. The relationship between stress σ and the strain ε for this model is as follows: 

𝜎𝜎 = 𝐸𝐸𝐸𝐸 + 2𝜇𝜇𝐸𝐸𝐸𝐸̇. (11) 
The inclusion of rheological properties and axial forces significantly brings model (12) closer to the real 
system: 

𝐸𝐸𝐸𝐸 𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4 + 2𝜇𝜇𝐸𝐸𝐸𝐸 𝜕𝜕5𝑤𝑤

𝜕𝜕𝑥𝑥4𝜕𝜕𝑡𝑡
− 𝜌𝜌𝐸𝐸 𝜕𝜕4𝑤𝑤

𝜕𝜕𝑥𝑥2𝜕𝜕𝑡𝑡2 + 𝜌𝜌𝜌𝜌 𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2 − 𝐹𝐹𝑥𝑥 �𝜕𝜕𝑤𝑤

𝜕𝜕𝑥𝑥
�

2
= 𝑓𝑓(𝑥𝑥, 𝑡𝑡).  (12) 

The identical analysis performed for the system without damping gives the characteristic equation: 

𝐸𝐸𝐸𝐸(1 + 2𝑖𝑖𝜇𝜇𝜔𝜔)𝑠𝑠4 + (𝜌𝜌𝐸𝐸𝜔𝜔2 − 𝐹𝐹𝑥𝑥)𝑠𝑠2 − 𝜌𝜌𝜌𝜌𝜔𝜔2 = 0. (13) 
The solution (13) is four complex roots: 

𝑠𝑠1,2 = ± 𝑖𝑖�(𝜌𝜌𝐸𝐸 − 𝐹𝐹𝑥𝑥) 𝜔𝜔2

2
+ 𝜔𝜔�𝐸𝐸 𝜌𝜌2𝜔𝜔2

4
+ 𝜌𝜌𝜌𝜌 2𝐸𝐸𝐸𝐸(1 + 2𝑖𝑖𝜇𝜇𝜔𝜔)�   (14) 

and 

𝑠𝑠1,2 = ± �−(𝜌𝜌𝐸𝐸 − 𝐹𝐹𝑥𝑥) 𝜔𝜔2

2
+ 𝜔𝜔�𝐸𝐸 𝜌𝜌2𝜔𝜔2

4
+ 𝜌𝜌𝜌𝜌 2𝐸𝐸𝐸𝐸(1 + 2𝑖𝑖𝜇𝜇𝜔𝜔)�     (15) 

The analysis of the position of the elements on the plane of complex variables (Fig. 2) shows that some 
group of them is responsible for the generation of poorly damped vibrations. Another group of roots 
generates damped vibrations of the average frequency, and the next one introduces a structural delay to 
the system. Roots which lie on the real axis, and have large, negative values are usually omitted (inertial 
components). 
 

 
Figure 2. Distribution of the roots of the model on the plane of the complex variable- the location of 

complex and real elements. 
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The roots clustered close to each other and lying on the real correspond to inertial transmittances, the 
approximate model of which is the equivalent structural delay. Its value depends on the arm geometry, 
material parameters, and the axial force. It should be noted that for the increasing force 𝐹𝐹𝑥𝑥>0, the elements 
reduce their imaginary part, which corresponds to the reduction in vibration amplitude. Some of the 
complex roots move to the real axis, see Fig. 3. The system loses its oscillating properties at higher 
frequencies but strengthens the structural delay. 
 

 
 

Figure 3. Distribution of the roots of the model on the plane of the complex variable- displacement of 
elements depending on the force 𝐹𝐹𝑥𝑥. 

 
The reverse is the case for 𝐹𝐹𝑥𝑥<0. The system tends to increase the oscillation (amplitude) at the expense of 
structural delays. The important conclusion is that the direction of the light- weight arm motion affects the 
amount of deformation. Even more important is the shape of distribution of the elements on the plane of 
the complex variable plane from the point of view of the control system synthesis task [7]. Even if the actual 
values are slightly different from the theoretical values, the principle of their mutual location will remain 
unchanged. For the limit values of material and geometric parameters, the area of their location is shown in 
Fig. 4.  

 
Figure 4. Area of the location of the elements on the plane of the complex variable. 

As the distribution of elements for the three models: EBM, TM, and RM are similar, taking into account 
the degree of complication and the accuracy of the model, the approach with the use of RDFM seems to be 
the most advantageous solution. 

4. Case study 

We consider a planar system of two arms connected by rotary hinged joints, the lower of which is rigid and 
the upper is flexible (see Fig. 5). 
 

 
 

Figure 5. Planar system with two arms 
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Flexible arm parameters are shown in Table 2. 

Table 2. Model parameters.  

Parameter Symbol Unit Value 
Length of the arm 𝑙𝑙 m 1.0 

 Density of the arm 𝜌𝜌 kg/m3
 2700 

Young's modulus of the arm 𝐸𝐸 GPa 75 
Inertia of cross-section of the arm 𝐸𝐸 m4

 3.22e-9 
Cross sectional area of the arm 𝜌𝜌 m2

 2.011e-4 
Damping coefficient of the arm 𝜇𝜇 1/s 4.5e-5 

 

The dynamic properties of the system described in paragraphs two and three of the publication are clearly 
visible during the phases of the javelin-like motion. Figure 6a shows the phase of linear acceleration of the 
flexible arm under the influence of the force from the rigid arm. Figure 6b shows the phase for 𝐹𝐹𝑥𝑥 = 0, it is 
the neutral state. Figure 6c shows the case where the linear motion of a flexible arm is decelerated. 
 

 
 

Figure 6. Three phases of motion of the flexible arm. 

The three phases of motion shown in Fig. 6 correspond to the time series from Fig. 7. One can clearly see 
the influence of the axial force 𝐹𝐹𝑥𝑥 on the system. 
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(a) 

(b) 

Figure 7. Time series of displacement amplitude during two phases of motion: 
 (a) acceleration, (b) deceleration.  

The maximum amplitude of vibrations in the acceleration phase is more than twice as large as the maximum 
amplitude of vibrations in the braking phase. This is an extremely unfavourable phenomenon that must be 
taken into account and then compensated by a sophisticated control system. 

5. Conclusions  

The paper describes selected problems related to the deformation of light robot arms and mathematical 
modelling of such structures, based on the knowledge resulting from the analysis of numerous publications 
and the author's own experience. Attention was focused on determining the position of the poles for three 
different models of transverse vibrations of the robot arm in the form of a beam. The three models 
considered are the Euler-Bernoulli model, the Rayleigh model, and the Timoshenko model with identical 
boundary conditions (clamped-free). Taking into account the accuracy of the model while maintaining the 
relative simplicity, the following analysis was carried out for the Rayleigh model enriched with the internal 
effect of structural viscoelasticity and the axial forces occurring in the arms during the acceleration and 
braking phase. It has been shown how strong is the influence of axial forces on the dynamic properties of 
the system. Taking into account the acceleration phase for an unfavourable arm configuration, the system 
may lose stability in rare cases. 
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