PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

State of the Art Compendium of Macro and Micro Energies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the span of past few decades, population, urbanization and industrialization have transformed the mankind living standard and dynamics of the nature. Certainly, energy is the basic need for all living organisms. Energy is the route towards the economic growth. The evidence shows that the countries faced with energy crises are left behind in the economic activities; as a result, people are deprived. This study reviewed the available renewable energy resources and potential with positive and negative aspects. This study comprehensively discusses the renewable macro and micro energy resources studied in the past two decades reported in various studies. The paper is divided into two sections; the first section discusses the energy produced in the macro level and the second section discusses the energy produced using different strategies and techniques in the micro level. The potential and positive outcomes of the energy resources were identified. New paradigm of micro energies and importance of reusing the available resource of micro energy using different resources like energy harvesting on the road surface, vibration, airflow, radio frequency and thermal energy etc. were discussed. Lastly, the study focus does not only review but also finds the potential and opportunities for the researchers in the future to utilize the renewable energy resources.
Twórcy
  • Department of Civil Engineering, Universiti Tenaga, Nasional Putrajaya Campus, Malaysia
autor
  • Department of Civil Engineering, Universiti Tenaga, Nasional Putrajaya Campus, Malaysia
  • Department of Civil Engineering, Universiti Tenaga, Nasional Putrajaya Campus, Malaysia
  • Department of Power Generation, Research Centre, Universiti Tenaga, Malaysia
Bibliografia
  • 1. Varadi PF. Sun above the Horizon: Meteoric Rise of the Solar Industry. Pan Stanford; 2014 May 27. Google Scholar.
  • 2. Eric P. Climate Change Denial Is the Original Fake News. The Environment. TIME, NewYork, 2017. Google Scholar.
  • 3. McCright AM, Charters M, Dentzman K, Dietz T. Examining the effectiveness of climate change frames in the face of a climate change denial counter frame. Topics in Cognitive Science. 2016 Jan;8(1):76-97. doi.org/10.1111/tops.12171.
  • 4. Farmer GT, Cook J. Understanding climate change denial. InClimate change science: a modern synthesis 2013 (pp. 445-466). Springer, Dordrecht. Google Scholar.
  • 5. Harris JM, Roach B. Environmental and Natural Resource Economics. A Contemporary Approach.- ME Sharpe, Inc. Google Scholar.
  • 6. Mbeva K, Pauw WP. Self-differentiation of countries’ responsibilities. German Development Institute/Deutsches Institut für Entwicklungspolitik (DIE); 2016. Google Scholar.
  • 7. Kousser T, Tranter B. The influence of political leaders on climate change attitudes. Global Environmental Change. 2018 May 31;50:100-9. doi. org/10.1016/j.gloenvcha.2018.03.005.
  • 8. World Energy council, “World Energy Resources,” London, 2016. Google Scholar.
  • 9. Petroleum B. “Statistical Review of World Energy,” BP Stat. Rev. World Energy, no. June, pp. 1–48, 2016.
  • 10. Energy R. Accelerating the global energy transformation. International Renewable Energy Agency (IRENA). Abu Dhabi. 2017.Google Scholar.
  • 11. Moriarty P, Honnery D. What is the global potential for renewable energy?. Renewable and Sustainable Energy Reviews. 2012 Jan 1;16(1):244-52. doi. org/10.1016/j.rser.2011.07.151.
  • 12. Twidell J, Weir T. Renewable energy resources. Routledge; 2015 Jan 26. Google Scholar.
  • 13. Darmawi, R. Sipahutar, S. M. Bernas and M. S. Imanuddin, “Renewable energy and hydropower utilization tendency worldwide,” Renew. Sustain. Energy Rev., vol. 17, pp. 213–215, Jan. 2013. doi. org/10.1016/j.rser.2012.09.010.
  • 14. Long H, Li X, Wang H, Jia J. Biomass resources and their bioenergy potential estimation: A review. Renewable and Sustainable Energy Reviews. 2013 Oct 1;26:344-52. doi.org/10.1016/j.rser.2013.05.035.
  • 15. World Bioenergy Association. WBA global bioenergy statistics 2015. WBA. Obtenido de http:// www.worldbioenergy.org/sites/default/files/ WBA% 20Global% 20Bioener gy% 20Statistics. 2015;202015:20. Google Scholar.
  • 16. World Bioenergy Association. WBA Global Bioenergy Statistics. World Bioenergy Association: Stockholm, Sweden. 2017. Google Scholar.
  • 17. Zhao XG, Jiang GW, Li A, Wang L. Economic analysis of waste-to-energy industry in China. Waste management. 2016 Feb 29;48:604-18. doi. org/10.1016/j.wasman.2015.10.014.
  • 18. Kumar A, Samadder SR. A review on technological options of waste to energy for effective management of municipal solid waste. Waste Management. 2017 Nov 1;69:407-22. doi.org/10.1016/j. wasman.2017.08.046.
  • 19. Malinauskaite J, Jouhara H, Czajczyńska D, Stanchev P, Katsou E, Rostkowski P, Thorne RJ, Colón J, Ponsá S, Al-Mansour F, Anguilano L. Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. energy. 2017 Dec 15;141:2013- 44. doi.org/10.1016/j.energy.2017.11.128.
  • 20. Astrup TF, Tonini D, Turconi R, Boldrin A. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations. Waste management. 2015 Mar 1;37:104-15. doi. org/10.1016/j.wasman.2014.06.011.
  • 21. Ahmad M. Ayob M. “Improvement of Asphaltic Concrete by Using Waste Polyethylen Terephthalate (PET). International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET). vol. 4, no. 8, pp. 6744–6753, 2015. DOI:10.15680/IJIRSET.2015.0408006.
  • 22. Bajić BŽ, Dodić SN, Vučurović DG, Dodić JM, Grahovac JA. Waste-to-energy status in Serbia. Renewable and Sustainable Energy Reviews. 2015 Oct 1;50:1437-44. doi.org/10.1016/j. rser.2015.05.079.
  • 23. Singh CK, Kumar A, Roy SS. Quantitative analysis of the methane gas emissions from municipal solid waste in India. Scientific reports. 2018 Feb 13;8(1):2913. doi.org/10.1038/s41598-018-21326-9.
  • 24. Hamad TA, Agll AA, Hamad YM, Sheffield JW. Solid waste as renewable source of energy: current and future possibility in Libya. Case studies in thermal Engineering. 2014 Nov 1;4:144-52. doi. org/10.1016/j.csite.2014.09.004.
  • 25. Aracil C, Haro P, Giuntoli J, Ollero P. Proving the climate benefit in the production of biofuels from municipal solid waste refuse in Europe. Journal of cleaner production. 2017 Jan 20;142:2887-900. doi.org/10.1016/j.jclepro.2016.10.181.
  • 26. Cantrell KB, Ro KS, Szögi AA, Vanotti MB, Smith MC, Hunt PG. Green farming systems for the Southeast USA using manure-to-energy conversion platforms. Journal of Renewable and Sustainable Energy. 2012 Jul;4(4):041401. doi. org/10.1063/1.3663846.
  • 27. DeKay M, Brown GZ. Sun, wind, and light: architectural design strategies. John Wiley & Sons; 2013 Dec 16. Google Scholar.
  • 28. Kabir E, Kumar P, Kumar S, Adelodun AA, Kim KH. Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews. 2018 Feb 1;82:894-900. doi.org/10.1016/j. rser.2017.09.094.
  • 29. Reddy VS, Kaushik SC, Ranjan KR, Tyagi SK. State-of-the-art of solar thermal power plants—A review. Renewable and Sustainable Energy Reviews. 2013 Nov 1;27:258-73. doi.org/10.1016/j. rser.2013.06.037.
  • 30. Solangi KH, Islam MR, Saidur R, Rahim NA, Fayaz H. A review on global solar energy policy. Renewable and sustainable energy reviews. 2011 May 1;15(4):2149-63. doi.org/10.1016/j. rser.2011.01.007.
  • 31. Tietenberg TH, Lewis L. Environmental and natural resource economics. Routledge; 2016 Mar 4. Google Scholar.
  • 32. Besarati SM, Padilla RV, Goswami DY, Stefanakos E. The potential of harnessing solar radiation in Iran: Generating solar maps and viability study of PV power plants. Renewable energy. 2013 May 1;53:193-9. doi.org/10.1016/j.renene.2012.11.012.
  • 33. Kannan N, Vakeesan D. Solar energy for future world:-A review. Renewable and Sustainable Energy Reviews. 2016 Sep 1;62:1092-105. doi. org/10.1016/j.rser.2016.05.022.
  • 34. Kim H, Kim HS, Ha J, Park NG, Yoo S. Solar Cells: Empowering Semi Transparent Solar Cells with Thermal Mirror Functionality (Adv. Energy Mater. 14/2016). Advanced Energy Materials. 2016 Jul;6(14). doi.org/10.1002/aenm.201670081.
  • 35. Castillo CP, e Silva FB, Lavalle C. An assessment of the regional potential for solar power generation in EU-28. Energy policy. 2016 Jan 1;88:86-99. doi. org/10.1016/j.enpol.2015.10.004.
  • 36. Hernandez RR, Easter SB, Murphy-Mariscal ML, Maestre FT, Tavassoli M, Allen EB, Barrows CW, Belnap J, Ochoa-Hueso R, Ravi S, Allen MF. Environmental impacts of utility-scale solar energy. Renewable and sustainable energy reviews. 2014 Jan 1;29:766-79. doi.org/10.1016/j. rser.2013.08.041.
  • 37. Lu SM. A global review of enhanced geothermal system (EGS). Renewable and Sustainable Energy Reviews. 2018 Jan 1;81:2902-21. doi. org/10.1016/j.rser.2017.06.097.
  • 38. Olasolo P, Juárez MC, Morales MP, Liarte IA. Enhanced geothermal systems (EGS): A review. Renewable and Sustainable Energy Reviews. 2016 Apr 1;56:133-44. doi.org/10.1016/j. rser.2015.11.031.
  • 39. Barbier E. Geothermal energy technology and current status: an overview. Renewable and sustainable energy reviews. 2002 Jan 1;6(1-2):3-65. doi. org/10.1016/S1364-0321(02)00002-3.
  • 40. Breede K, Dzebisashvili K, Liu X, Falcone G. A systematic review of enhanced (or engineered) geothermal systems: past, present and future. Geothermal Energy. 2013 Dec 1;1(1):4. doi. org/10.1186/2195-9706-1-4.
  • 41. Gondal IA, Masood SA, Amjad M. Review of geothermal energy development efforts in Pakistan and way forward. Renewable and Sustainable Energy Reviews. 2017 May 1;71:687-96. doi. org/10.1016/j.rser.2016.12.097.
  • 42. Barnett PR, Mandagi S, Iskander T, Abidin Z, Armaladdoss A, Raad R. Exploration and Development of the Tawau Geothermal Project, Malaysia. InProceedings World Geothermal Congress 2015 2015 Apr (pp. 19-25). Google Scholar.
  • 43. Amano RS. Review of Wind Turbine Research in 21st Century. Journal of Energy Resources Technology. 2017 Sep 1;139(5):050801. doi: 10.1115/1.4037757.
  • 44. Pieralli S, Ritter M, Odening M. Efficiency of wind power production and its determinants. Energy. 2015 Oct 1;90:429-38. doi.org/10.1016/j.energy.2015.07.055.
  • 45. Gipe P. Wind power. Wind Engineering. 2004 Sep;28(5):629-31. doi. org/10.1260/0309524043028145.
  • 46. Small L, Beirne S, Gutin O. Fact Sheet: Offshore Wind-can the United States Catch Up with Europe?. Environmental and Energy Study Institute, last modified January. 2016;4. Google Scholar.
  • 47. Pelc R, Fujita RM. Renewable energy from the ocean. Marine Policy. 2002 Nov 1;26(6):471-9. doi.org/10.1016/S0308-597X(02)00045-3.
  • 48. Armaroli N, Balzani V. The future of energy supply: challenges and opportunities. Angewandte Chemie International Edition. 2007 Jan;46(12):52- 66. doi.org/10.1002/anie.200602373.
  • 49. Panwar NL, Kaushik SC, Kothari S. Role of renewable energy sources in environmental protection: a review. Renewable and Sustainable Energy Reviews. 2011 Apr 1;15(3):1513-24. doi. org/10.1016/j.rser.2010.11.037.
  • 50. Hoegh-Guldberg O, Bruno JF. The impact of climate change on the world’s marine ecosystems. Science. 2010 Jun 18;328(5985):1523-8. 10.1126/ science.1189930.
  • 51. Uihlein A, Magagna D. Wave and tidal current energy–A review of the current state of research beyond technology. Renewable and Sustainable Energy Reviews. 2016 May 1;58:1070-81. doi. org/10.1016/j.rser.2015.12.284
  • 52. Smith HD, de Vivero JL, Agardy TS. Routledge Handbook of Ocean Resources and Management. Routledge; 2015 Oct 16. Google Scholar
  • 53. Rhinefrank K, Schacher A, Prudell J, Hammagren E, von Jouanne A, Brekken T. Scaled development of a novel wave energy converter through wave tank to utility-scale laboratory testing. InPower & Energy Society General Meeting, 2015 IEEE 2015 Jul 26 (pp. 1-5). IEEE. DOI: 10.1109/PESGM.2015.7286008.
  • 54. Magagna D, Uihlein A. Ocean energy development in Europe: Current status and future perspectives. International Journal of Marine Energy. 2015 Sep 1;11:84-104. doi.org/10.1016/j.ijome.2015.05.001.
  • 55. Antonio FD. Wave energy utilization: A review of the technologies. Renewable and sustainable energy reviews. 2010 Apr 1;14(3):899-918. doi. org/10.1016/j.rser.2009.11.003.
  • 56. Mo̸rk G, Barstow S, Kabuth A, Pontes MT. Assessing the global wave energy potential. InASME 2010 29th International conference on ocean, offshore and arctic engineering 2010 Jan 1 (pp. 447- 454). American Society of Mechanical Engineers. 10.1115/OMAE2010-20473.
  • 57. Borthwick AG. Marine renewable energy seascape. Engineering. 2016 Mar 1;2(1):69-78. doi. org/10.1016/J.ENG.2016.01.011.
  • 58. Owen A. Tidal current energy: origins and challenges. InFuture energy 2008 (pp. 111-128). doi. org/10.1016/B978-0-08-054808-1.00007-7.
  • 59. Gorlov AM. Tidal energy. Academic, London. 2001:2955-60. Google Scholar.
  • 60. Charlier RH, Justus JR. Ocean energies: environmental, economic and technological aspects of alternative power sources. Elsevier; 1993 Sep 17. Google Scholar.
  • 61. Bahaj AS. Generating electricity from the oceans. Renewable and Sustainable Energy Reviews. 2011 Sep 1;15(7):3399-416. doi.org/10.1016/j. rser.2011.04.032.
  • 62. Nihous GC. Mapping available Ocean Thermal Energy Conversion resources around the main Hawaiian Islands with state-of-the-art tools. Journal of Renewable and Sustainable Energy. 2010 Jul;2(4):043104. doi.org/10.1063/1.3463051.
  • 63. Andrawina YO, Sugianto DN, Alifdini I. Initial Study Of Potency Thermal Energy Using OTEC (Ocean Thermal Energy Conversion) As A Renewable Energy For Halmahera Indonesia. InIOP Conference Series: Earth and Environmental Science 2017 Feb (Vol. 55, No. 1, p. 012032). IOP Publishing. doi.org/10.1088/1755-1315/55/1/012032.
  • 64. Masutani SM, Takahashi PK. Ocean thermal energy conversion (OTEC). Oceanography. 2001;22(609):625. Google Scholar.
  • 65. Chan M. Ocean thermal energy conversion. Penn Sustainability Review. 2015;1(7):9. Google Scholar.
  • 66. Schaetzle O, Buisman CJ. Salinity gradient energy: current state and new trends. doi.org/10.15302/J-ENG-2015046.
  • 67. Pattle RE. Production of electric power by mixing fresh and salt water in the hydroelectric pile. Nature. 1954 Oct;174(4431):660. Google Scholar Google Scholar
  • 68. Emami Y, Mehrangiz S, Etemadi A, Mostafazadeh A, Darvishi S. A brief review about salinity gradient energy. Int. J. Smart Grid Clean Energy. 2013;2:295-300. Google Scholar.
  • 69. Tamburini A, Cipollina A, Papapetrou M, Piacentino A, Micale G. Salinity gradient engines. In Sustainable energy from salinity gradients 2016 (pp. 219-256). doi.org/10.1016/B978-0-08-100312- 1.00007-9.
  • 70. Isaacs JD, Seymour RJ. The ocean as a power resource. international journal of environmental studies. 1973 Jan 1;4(1-4):201-5. doi. org/10.1080/00207237308709563.
  • 71. Logan BE, Elimelech M. Membrane-based processes for sustainable power generation using water. Nature. 2012 Aug;488(7411):313. Google Scholar.
  • 72. Zhu Y, Wang W, Cai B, Hao J, Xia R. The salinity gradient power generating system integrated into the seawater desalination system. InIOP Conference Series: Earth and Environmental Science 2017 Jan (Vol. 52, No. 1, p. 012067). IOP Publishing. doi.org/10.1088/1742-6596/52/1/012067.
  • 73. Harb A. Energy harvesting: State-of-the-art. Renewable Energy. 2011 Oct 1;36(10):2641-54. doi. org/10.1016/j.renene.2010.06.014.
  • 74. Banks D, Schäffler J. The potential contribution of renewable energy in South Africa. Sustainable Energy & Climate Change Project (SECCP); 2005. Google Scholar.
  • 75. Konovalov V, Pogharnitskaya O, Rostovshchikova A, Matveenko I. Potential of renewable and alternative energy sources. InIOP Conference Series: Earth and Environmental Science 2015 (Vol. 27, No. 1, p. 012068). IOP Publishing. doi. org/10.1088/1755-1315/27/1/012068.
  • 76. Mariam L, Basu M, Conlon MF. A review of existing microgrid architectures. Journal of Engineering. 2013;2013. dx.doi.org/10.1155/2013/937614.
  • 77. Bobes-Jesus V, Pascual-Muñoz P, Castro-Fresno D, Rodriguez-Hernandez J. Asphalt solar collectors: a literature review. Applied Energy. 2013 Feb 1;102:962-70. doi.org/10.1016/j.apenergy.2012.08.050.
  • 78. Singh GK. Solar power generation by PV (photovoltaic) technology: A review. Energy. 2013 May 1;53:1-3. doi.org/10.1016/j.energy.2013.02.057.
  • 79. Abolhosseini S, Heshmati A, Altmann J. A review of renewable energy supply and energy efficiency technologies. Google Scholar.
  • 80. Selvan KV, Ali MS. Micro-scale energy harvesting devices: Review of methodological performances in the last decade. Renewable and Sustainable Energy Reviews. 2016 Feb 1;54:1035-47. doi. org/10.1016/j.rser.2015.10.046.
  • 81. Muhtaroğlu A. Micro-scale Energy Harvesting for Batteryless Information Technologies. InEnergy Harvesting and Energy Efficiency 2017 (pp. 63- 85). Springer, Cham. doi.org/10.1007/978-3-319- 49875-1_3.
  • 82. Khaligh A, Onar OC. Energy harvesting: solar, wind, and ocean energy conversion systems. CRC press; 2009 Dec 1. Google Scholar.
  • 83. Lu C, Raghunathan V, Roy K. Efficient design of micro-scale energy harvesting systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2011 Sep;1(3):254-66. 10.1109/JETCAS.2011.2162161.
  • 84. Wei C, Jing X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews. 2017 Jul 1;74:1-8. doi.org/10.1016/j.rser.2017.01.073.
  • 85. Fang LH, Hassan SI, Rahim RB, Malek MF. A study of vibration energy harvester. ARPN Journal of Engineering and Applied Sciences. 2016: Vol 8.11. Google Scholar.
  • 86. Kirubaveni S, Radha S. Vibration energy harvesting for low power devices. InGreen Engineering and Technologies (IC-GET), 2016 Online International Conference on 2016 Nov 19 (pp. 1-4). IEEE. 10.1109/GET.2016.7916705.
  • 87. Dipak S, Rajarathinam M, Ali SF. Energy harvesting dynamic vibration absorber under random vibration. In2013 IEEE International Conference on Control Applications (CCA) 2013 Aug 28 (pp. 1241-1246). IEEE. DOI: 10.1109/ CCA.2013.6662922.
  • 88. Green PL, Papatheou E, Sims ND. Energy harvesting from human motion and bridge vibrations: An evaluation of current nonlinear energy harvesting solutions. Journal of Intelligent Material Systems and Structures. 2013 Aug;24(12):1494-505. doi. org/10.1177/1045389X12473379.
  • 89. Griffin MJ. Handbook of human vibration. Academic press; 2012 Dec 2. Google Scholar.
  • 90. Vullers RJ, van Schaijk R, Doms I, Van Hoof C, Mertens R. Micropower energy harvesting. Solid- State Electronics. 2009 Jul 1;53(7):684-93. doi. org/10.1016/j.sse.2008.12.011.
  • 91. Beeby SP, Torah RN, Tudor MJ, Glynne-Jones P, O’donnell T, Saha CR, Roy S. A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and microengineering. 2007 Jun 5;17(7):1257. doi.org/10.1088/0960- 1317/17/7/007.
  • 92. Roundy S, Wright PK. A piezoelectric vibration based generator for wireless electronics. Smart Materials and structures. 2004 Aug 11;13(5):1131. doi.org/10.1088/0964-1726/13/5/018.
  • 93. Minazara E, Vasic D, Costa F. Piezoelectric generator harvesting bike vibrations energy to supply portable devices. InProceedings of International Conference on Renewable Energies And Power Quality (ICREPQ’08) 2008 Mar 12. Google Scholar.
  • 94. Starner T, Paradiso JA. Human generated power for mobile electronics. Low power electronics design. 2004 Dec;45:1-35. Google Scholar.
  • 95. Verschaeve L. Environmental impact of radiofrequency fields from mobile phone base stations. Critical Reviews in Environmental Science and Technology. 2014 Jun 18;44(12):1313-69. doi.org /10.1080/10643389.2013.781935.
  • 96. Hardell L, Carlberg M, Hedendahl LK. Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: A case report. Oncology letters. 2018 May 1;15(5):7871-83. doi.org/10.3892/ol.2018.8285.
  • 97. Pirapaharan K, Gunawickrama K, De Silva DS, De Silva MS, Dharmawardhana TL, Indunil WG, Wickramasinghe CB, Aravind CV. Energy harvesting through the radio frequency wireless power transfer. InRF and Microwave Conference (RFM), 2013 IEEE International 2013 Dec 9 (pp. 376-381). DOI: 10.1109/RFM.2013.6757288.
  • 98. Mouapi A, Hakem N, Delisle GY. A new approach to design of RF energy harvesting system to enslave wireless sensor networks. ICT Express. 2017 Dec 23. doi.org/10.1016/j.icte.2017.11.002.
  • 99. Aparicio MP, Bakkali A, Pelegri-Sebastia J, Sogorb T, Llario V, Bou A. Radio frequency energy harvesting-sources and techniques. InRenewable Energy-Utilisation and System Integration 2016. InTech. DOI:10.5772/61722.
  • 100. Lu X, Wang P, Niyato D, Kim DI, Han Z. Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys & Tutorials. 2015 May;17(2):757-89. DOI: 10.1109/COMST.2014.2368999.
  • 101. Zungeru AM, Ang LM, Prabaharan S, Seng KP. Radio frequency energy harvesting and management for wireless sensor networks. Green mobile devices and networks: Energy optimization and scavenging techniques. 2012 Mar 5:341-68. Google Scholar.
  • 102. Le TT. Efficient power conversion interface circuits for energy harvesting applications. 2008. Phd Theis. https://ir.library.oregonstate.edu/concern/ graduate_thesis_or_dissertations/5q47rr95w.
  • 103. Sun H, Zhu D, White NM, Beeby SP. A miniature airflow energy harvester from piezoelectric materials. InJournal of physics: Conference series 2013 (Vol. 476, No. 1, p. 012057). IOP Publishing. doi.org/10.1088/1742-6596/476/1/012057.
  • 104. Najafi K. Micro Energy Harvesters-An Alternative Source of Renewable Energy. 2010. Google Scholar.
  • 105. Matiko JW, Grabham NJ, Beeby SP, Tudor MJ. Review of the application of energy harvesting in buildings. Measurement Science and Technology. 2013 Nov 13;25(1):012002. doi. org/10.1088/0957-0233/25/1/012002.
  • 106. Weimer MA, Paing TS, Zane RA. Remote area wind energy harvesting for low-power autonomous sensors. InPower Electronics Specialists Conference, 2006. PESC’06. 37th IEEE 2006 Jun 18 (pp. 1-5). DOI: 10.1109/pesc.2006.1712213.
  • 107. Boccalero G, Boragno C, Morasso R, Caviglia DD. Efficiency Issues for a Wind-Driven Energy Harvesting Device. Journal of Low Power Electronics. 2018 Mar 1;14(1):140-7. doi.org/10.1166/ jolpe.2018.1534.
  • 108. Khan FU, Iqbal M. Development of a testing rig for vibration and wind based energy harvesters. Journal of Engineering and Applied Sciences. 2016;35(2):101-10. Google Scholar.
  • 109. Rancourt D, Tabesh A, Fréchette LG. Evaluation of centimeter-scale micro windmills: aerodynamics and electromagnetic power generation. Proc. PowerMEMS. 2007 Nov 28;20079. Google Schola.r
  • 110. Howey DA, Bansal A, Holmes AS. Design and performance of a centimetre-scale shrouded wind turbine for energy harvesting. Smart Materials and Structures. 2011 Jul 20;20(8):085021. doi. org/10.1088/0964-1726/20/8/085021.
  • 111. Yang Z, Zhou S, Zu J, Inman D. High-performance piezoelectric energy harvesters and their applications. Joule. 2018 Apr 10. https://doi. org/10.1016/j.joule.2018.03.011.
  • 112. Betz A. Windmills in the light of modern research.1928. Google Scholar.
  • 113. Greet RJ. Maximum windmill efficiency. Journal of Applied Physics. 1980 Sep;51(9):4680-1. https://doi.org/10.1063/1.328340.
  • 114. Malík M, Primas J, Kopecký V, Svoboda M. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes. AIP Advances. 2014 Jan;4(1):017137. doi.org/10.1063/1.4864181.
  • 115. Casini M. Small vertical axis wind turbines for energy efficiency of buildings. Journal of Clean Energy Technologies. 2016 Jan;4(1):56-65. Google Scholar.
  • 116. Carli D, Brunelli D, Bertozzi D, Benini L. A high-efficiency wind-flow energy harvester using micro turbine. InPower electronics electrical drives automation and motion (SPEEDAM), 2010 international symposium on 2010 Jun 14 (pp. 778- 783). IEEE. 10.1109/SPEEDAM.2010.5542121.
  • 117. Prauzek M, Konecny J, Borova M, Janosova K, Hlavica J, Musilek P. Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors. 2018 Aug;18(8):2446. DOI: 10.3390/ s18082446.
  • 118. Hashim HT. Energy Harvesting from the Waste Heat of an Electrical Oven via Thermoelectric Generator. InJournal of Physics: Conference Series 2018 May (Vol. 1032, No. 1, p. 012024). IOP Publishing. doi.org/10.1088/1742- 6596/1032/1/012024.
  • 119. Shibata T, Fukuzumi Y, Kobayashi W, Moritomo Y. Thermal power generation during heat cycle near room temperature. Applied Physics Express. 2017 Dec 8;11(1):017101. doi.org/10.7567/ APEX.11.017101.
  • 120. Yoshida J, Morimoto K, Suzuki Y. Electrostatic thermal energy harvester using unsteady temperature change. InJournal of Physics: Conference Series 2013 (Vol. 476, No. 1, p. 012079). IOP Publishing. doi.org/10.1088/1742- 6596/476/1/012079.
  • 121. Hunter SR, Lavrik NV, Mostafa S, Rajic S, Datskos PG. Review of pyroelectric thermal energy harvesting and new MEMs-based resonant energy conversion techniques. InEnergy Harvesting and Storage: Materials, Devices, and Applications III 2012 May 25 (Vol. 8377, p. 83770D). International Society for Optics and Photonics. doi.org/10.1117/12.920978.
  • 122. Chalasani S, Conrad JM. A survey of energy harvesting sources for embedded systems. InSoutheastcon, 2008. IEEE 2008 Apr 3 (pp. 442-447). IEEE. Google Scholar.
  • 123. Zhu H. Thermal energy harvesting from temperature fluctuations. 2011. (Doctoral dissertation, Lyon, INSA). Google Scholar.
  • 124. Zhang X, Zhao LD. Thermoelectric materials: Energy conversion between heat and electricity. Journal of Materiomics. 2015 Jun 1;1(2):92-105. doi.org/10.1016/j.jmat.2015.01.001.
  • 125. Gould C, Edwards R. Review on micro-energy harvesting technologies. InPower Engineering Conference (UPEC), 2016 51st International Universities 2016 Sep 6 (pp. 1-5). IEEE. DOI: 10.1109/UPEC.2016.8114023.
  • 126. Lee HS. Thermal design: heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells. John Wiley & Sons; 2010 Nov 17. Google Scholar.
  • 127. Yin L, Yang L, Yang W, Guo Y, Ma K, Li S, Zhang J. Thermal design and analysis of multi-chip LED module with ceramic substrate. Solid- State Electronics. 2010 Dec 1;54(12):1520-4. doi. org/10.1016/j.sse.2010.06.028.
  • 128. Adroja MN, Mehta SB, Shah MP. Review of thermoelectricity to improve energy quality. InInternational Journal of Emerging Technologies and Innovative Research JETIR 2015 Mar (Vol. 2, No. 3 (March-2015)). JETIR. Google Scholar.
  • 129. Sodano HA, Dereux R, Simmers GE, Inman DJ. Power harvesting using thermal gradients for recharging batteries. InProceedings of 15th international conference on adaptive structures and technologies 2004 Oct 25 (pp. 25-27). Google Scholar.
  • 130. Rowe DM. Thermoelectric waste heat recovery as a renewable energy source. International Journal of Innovations in Energy Systems and Power. 2006 Nov;1(1):13-23. Google Scholar.
  • 131. LeBlanc S. Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications. Sustainable Materials and Technologies. 2014 Dec 1;1:26-35. doi.org/10.1016/j.susmat.2014.11.002.
  • 132. Hapenciuc CL, Borca-Tasciuc T, Mihailescu IN. The relationship between the thermoelectric generator efficiency and the device engineering figure of merit Zd, eng. The maximum efficiency max. AIP Advances. 2017 Apr;7(4):045007. doi. org/10.1063/1.4979328.
  • 133. Sebald G, Lefeuvre E, Guyomar D. Pyroelectric energy conversion: Optimization principles. ieee transactions on ultrasonics, ferroelectrics, and frequency control. 2008 Mar;55(3). DOI: 10.1109/TUFFC.2008.680.
  • 134. Hsiao CC, Siao AS. Improving pyroelectric energy harvesting using a sandblast etching technique. Sensors. 2013 Sep 10;13(9):12113-31. doi. org/10.3390/s130912113.
  • 135. Tang ZB, Deng YD, Su CQ, Shuai WW, Xie CJ. A research on thermoelectric generator’s electrical performance under temperature mismatch conditions for automotive waste heat recovery system. Case Studies in Thermal Engineering. 2015 Mar 1;5:143-50. doi.org/10.1016/j.csite.2015.03.006.
  • 136. Clingman WH, Moore Jr RG. Application of ferroelectricity to energy conversion processes. Journal of Applied Physics. 1961 Apr;32(4):675- 81. doi.org/10.1063/1.1736069.
  • 137. Hoh SR. Conversion of thermal to electrical energy with ferroelectric materials. Proceedings of the IEEE. 1963 May;51(5):838-45. DOI: 10.1109/ PROC.1963.2277.
  • 138. Gonzalo JA. Ferroelectric materials as energy converters. Ferroelectrics. 1976 Jan 1;11(1):423- 9. doi.org/10.1080/00150197608237774.
  • 139. Li Z, Zhou G, Zhu Z, Li W. A study on the power generation capacity of piezoelectric energy harvesters with different fixation modes and adjustment methods. Energies. 2016 Feb 19;9(2):98. doi:10.3390/en9020098.
  • 140. Sebald G, Pruvost S, Guyomar D. Energy harvesting based on Ericsson pyroelectric cycles in a relaxor ferroelectric ceramic. Smart Materials and Structures. 2007 Dec 3;17(1):015012. doi. org/10.1088/0964-1726/17/01/015012.
  • 141. Mohammadi S, Khodayari A. Pyroelectric energy harvesting: with thermodynamic-based cycles. Smart Materials Research. 2012;2012. dx.doi. org/10.1155/2012/160956.
  • 142. Lee FY, Goljahi S, McKinley IM, Lynch CS, Pilon L. Pyroelectric waste heat energy harvesting using relaxor ferroelectric 8/65/35 PLZT and the Olsen cycle. Smart Materials and Structures. 2012 Jan 26;21(2):025021. doi.org/10.1088/0964- 1726/21/2/025021.
  • 143. Reddy VS, Kaushik SC, Ranjan KR, Tyagi SK. State-of-the-art of solar thermal power plants—A review. Renewable and Sustainable Energy Reviews. 2013 Nov 1;27:258-73. doi.org/10.1016/j. rser.2013.06.037.
  • 144. Duarte F, Ferreira A. Energy harvesting on road pavements: state of the art. Proceedings of the institution of civil engineers. 2016 Mar 8;169:79- 90. doi.org/10.1680/muen.12.00025.
  • 145. Pan P, Wu S, Xiao Y, Liu G. A review on hydronic asphalt pavement for energy harvesting and snow melting. Renewable and Sustainable Energy Reviews. 2015 Aug 1;48:624-34. doi.org/10.1016/j. rser.2015.04.029.
  • 146. Beddu S, Talib SH, Itam Z. The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia. InIOP Conference Series: Earth and Environmental Science 2016 Mar (Vol. 32, No. 1, p. 012045). IOP Publishing. doi:10.1088/1755-1315/32/1/012045.
  • 147. Beddu S, Itam Z, Ahmad M, Alanimi F.B, and Zainoodin M. “Thermal Behavior of Asphalt Pavement as an Active Solar Collector under Malaysia Climate Condition Using Rubber Tube,” J. Eng. Appl. Sci. , vol. 13, no. 7, pp. 1690–1695, 2018.Medwell. Google Scholar.
  • 148. Ahmad M, Itam ZB, Beddu S, Alanimi FB, Soanathan SA. A determination of solar heat collection in sepertine copper and rubber pipe embedded in asphalt pavement using finite element method. J. Eng. Appl. Sci., vol. 13, no. 1, pp. 181–189, 2018. Medwell. Google Scholar.
  • 149. Basheer Sheeba J, Krishnan Rohini A. Structural and thermal analysis of asphalt solar collector using finite element method. Journal of Energy. 2014;2014. dx.doi.org/10.1155/2014/602087.
  • 150. Mallick RB, Chen BL, Bhowmick S. Harvesting energy from asphalt pavements and reducing the heat island effect. International Journal of Sustainable Engineering. 2009 Sep 1;2(3):214-28. doi.org/10.1080/19397030903121950.
  • 151. Liang G, Li P. Research on Thermoelectric Transducers for Harvesting Energy from Asphalt Pavement Based on Seebeck Effects. CRC Press, Boca Raton, Fla; 2015 May 14. Google Scholar.
  • 152. Han R, Jin X, Glover CJ. Modeling pavement temperature for use in binder oxidation models and pavement performance prediction. Journal of Materials in Civil Engineering. 2011 Mar 15;23(4):351-9. doi.org/10.1061/(ASCE) MT.1943-5533.0000169.
  • 153. Tongyan P, Yang L, Zhaoyang W. Development of an atomistic-based chemophysical environment for modelling asphalt oxidation. Polymer degradation and stability. 2012 Nov 1;97(11):2331-9. doi.org/10.1016/j.polymdegradstab.2012.07.032.
  • 154. Yavuzturk C, Ksaibati K, Chiasson AD. Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach. Journal of Materials in Civil Engineering. 2005 Aug;17(4):465-75. doi. org/10.1061/(ASCE)0899-1561(2005)17:4(465).
  • 155. García A, Partl MN. How to transform an asphalt concrete pavement into a solar turbine. Applied Energy. 2014 Apr 15;119:431-7. doi. org/10.1016/j.apenergy.2014.01.006.
  • 156. Loomans MG, Oversloot H, De Bondt A, Jansen R, Van Rij H. Design tool for the thermal energy potential of asphalt pavements. InEighth International IBPSA Conference, Eindhoven, Netherlands 2003 Aug 11 (p. 745). Google Scholar.
  • 157. Khoja AO, Waheeb SA. Exploring the Potentials of Asphalt Solar Collectors in Hot Humid Climates. Innov Ener Res. 2016;5(141):2. Google Scholar.
  • 158. Wu S, Wang H, Chen M, Zhang Y. Numerical and experimental validation of full-depth asphalt slab using capturing solar energy. InBioinformatics and Biomedical Engineering (iCBBE), 2010 4th International Conference on 2010 Jun 18 (pp. 1-4). IEEE. DOI: 10.1109/ICBBE.2010.5517215.
  • 159. Chiarelli A, Dawson AR, Garcia A. Field evaluation of the effects of air convection in energy harvesting asphalt pavements. Sustainable Energy Technologies and Assessments. 2017 Jun 1;21:50-8. doi.org/10.1016/j.seta.2017.04.001.
  • 160. Chen M, Wu S, Wang H, Zhang J. Study of ice and snow melting process on conductive asphalt solar collector. Solar Energy Materials and Solar Cells. 2011 Dec 1;95(12):3241-50. doi.org/10.1016/j. solmat.2011.07.013.
  • 161. Li W, Paul MC, Siviter J, Montecucco A, Knox AR, Sweet T, Min G, Baig H, Mallick TK, Han G, Gregory DH. Thermal performance of two heat exchangers for thermoelectric generators. Case Studies in Thermal Engineering. 2016 Sep 1;8:164-75. doi.org/10.1016/j.csite.2016.06.008.
  • 162. Guo L, Lu Q. Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renewable and Sustainable Energy Reviews. 2017 May 1;72:761-73. doi. org/10.1016/j.rser.2017.01.090.
  • 163. Montecucco A, Siviter J, Knox AR. The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel. Applied Energy. 2014 Jun 15;123:47-54. doi. org/10.1016/j.apenergy.2014.02.030.
  • 164. Borgström F, Coyet J. Waste heat recovery system with new thermoelectric materials. Applied Thermodynamics and Fluid Mechanics. Master Thesis. 2015. Google Scholar.
  • 165. Wu G, Yu X. Thermal energy harvesting across pavement structure. 2012. Google Schoalr.
  • 166. Duarte FJ. Pavement Energy Harvesting System to Convert Vehicles Kinetic Energy into Electricity (Doctoral dissertation, 00500:: Universidade de Coimbra). Google Scholar.
  • 167. Wu GX, Yu BX. Computer-aided design of thermal energy harvesting system across pavement structure. International Journal of Pavement Research and Technology. 2013 Mar 1;6(2):73-9. doi 10.6135/ijprt.org.tw/2013.6(2).73.
  • 168. Vo HV, Park DW. Application of Conductive Materials to Asphalt Pavement. Advances in Materials Science and Engineering. 2017;2017. doi. org/10.1155/2017/4101503.
  • 169. Pan P, Wu S, Xiao F, Pang L, Xiao Y. Conductive asphalt concrete: A review on structure design, performance, and practical applications. Journal of Intelligent Material Systems and Structures. 2015 May;26(7):755-69. doi. org/10.1177/1045389X14530594.
  • 170. Partl MN. Towards improved testing of modern asphalt pavements. Materials and Structures. 2018 Dec 1;51(6):166. doi.org/10.1617/s11527- 018-1286-9.
  • 171. García Á, Schlangen E, van de Ven M, Liu Q. Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Construction and building materials. 2009 Oct 1;23(10):3175-81. doi.org/10.1016/j.conbuildmat.2009.06.014.
  • 172. Al-Mansoori T, Norambuena-Contreras J, Garcia A. Effect of capsule addition and healing temperature on the self-healing potential of asphalt mixtures. Materials and Structures. 2018 Apr 1;51(2):53. doi.org/10.1617/s11527-018-1172-5.
  • 173. Sun D, Pang Q, Zhu X, Tian Y, Lu T, Yang Y. Enhanced self-healing process of sustainable asphalt materials containing microcapsules. ACS Sustainable Chemistry & Engineering. 2017 Oct 6;5(11):9881-93. doi: 10.1021/ acssuschemeng.7b01850.
  • 174. Wendel IL. Paving and Solar Energy System and Method. United States Patent, 4132074. 1979. Google Scholar.
  • 175. Lund JW. Pavement snow melting. Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR. 2002. Google Scholar.
  • 176. Lai J, Qiu J, Chen J, Fan H, Wang K. New technology and experimental study on snow-melting heated pavement system in tunnel portal. Advances in Materials Science and Engineering. 2015;2015. dx.doi.org/10.1155/2015/706536.
  • 177. Ahmad M, Ayob MB. Improvement of road pavement infrastructure by using polyethylene terephthalate and polypropylene. In Proceedings of 23rd The IIER International Conference, Singapore 2015 (pp. 48-53). Google Scholar.
  • 178. Dezfooli AS, Nejad FM, Zakeri H, Kazemifard S. Solar pavement: A new emerging technology. Solar Energy. 2017 Jun 1;149:272-84. doi. org/10.1016/j.solener.2017.04.016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f3de0f6-6491-41ed-9cbe-ab57b787cc39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.