PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of Stress Relaxation Behaviour of Composite Propellants with Varying Solid Loading Using the Generalized Maxwell Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydroxyl-terminated polybutadiene (HTPB) based composite propellants possess viscoelastic behaviour and hence time and temperature dependent mechanical properties. The mathematical analysis of viscoelastic behaviour of composite propellants becomes complex due to the non-linearity involved under various loading conditions. In the present study, a linear viscoelasticity assumption was considered to simulate stresses related to storage conditions. In this paper, a study of stress relaxation behaviour of composite propellants was carried out using the Generalized Maxwell model to obtain the material viscoelastic characteristics. The relaxation behaviour of composite propellants having solid loading varying from 85% to 89% were studied at different temperatures, from -27 to +32 °C, using a Dynamic Mechanical Analyser (DMA). The generated relaxation curves were curve fitted using MATLAB (R2022a) with the Generalized Maxwell model. The simulation demonstrated that a maximum of four elemental parameters of the Generalized Maxwell model are sufficient and can represent a best fit of the relaxation behaviour of the studied composite propellants. The equilibrium modulus was also evaluated at different temperatures, along with other material constants that are essential parameters for performing the structure integrity analysis of a solid propellant rocket motor. It was observed that the equilibrium modulus decreases with an increase in temperature, but increases with an increase in solid loading in the propellant composition formulations.
Rocznik
Strony
221--235
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • High Energy Materials Research Laboratory, DRDO, Sutarwadi, Pune-411021, India
  • Defence Institute of Advanced Technology, Girinagar, Pune-411025, India
autor
  • High Energy Materials Research Laboratory, DRDO, Sutarwadi, Pune-411021, India
autor
  • High Energy Materials Research Laboratory, DRDO, Sutarwadi, Pune-411021, India
autor
  • High Energy Materials Research Laboratory, DRDO, Sutarwadi, Pune-411021, India
Bibliografia
  • [1] Landel, R.F.; Smith T.L. Viscoelastic Properties of Rubberlike Composite Propellants and Filled Elastomers. ARS J. 1961, 31(5): 599-608.
  • [2] Nielsen, L.E. Mechanical Properties of Particulate Filled System. J. Compos. Mater. 1967, 1: 100.
  • [3] Bigg, D.M. Mechanical Properties of Particulate Filled Polymers. Polym. Compos. 1987, 8(2): 115-122; DOI: 10.1002/pc.750080208.
  • [4] Robert, N. An Extension of the Time-Temperature Superposition Principle to nonLinear Visco-Elastic Solids. Int. J. Solids Struct. 2006, 43: 5295-5306
  • [5] Miller, T.C.; Wojnar, C.S.; Louke, J.A. Measuring Propellant Stress Relaxation Modulus Using Dynamic Mechanical Analyzer. J. Propul. Power 2017, 33(5): 1-8; DOI: 10.2514/1.B36446.
  • [6] Brzić, S.J.; Jelisavac, L.N.; Galović, J.R.; Simić, D.M.; Petković, J.L. Viscoelastic Properties of Hydroxyl-Terminated Poly(butadiene) Based Composite Rocket Propellants. Hemijska Industrija 2014, 68(4): 435-443; DOI: 10.2298/HEMIND130426067B.
  • [7] Amos, R.J. On a Viscoplastic Characterisation of Solid Propellant and the Prediction of Grain Failure on Pressurization Cold. Proc. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA, 2001, paper 2001-3719.
  • [8] Wani, V.S.; Mehilal; Jain, S.; Singh, P.P.; Bhattacharya, B. Studies on the Influence of Testing Parameters on Dynamic and Transient Properties of Composite Solid Rocket Propellant Using a Dynamic Mechanical Analyzer. J. Aerosp. Technol. Manage. 2012, 4(4): 443-452; DOI: 10.5028/jatm.2012.04044012.
  • [9] Bihari, K.B.; Wani, S.V.; Rao, P.N.N.; Singh, P.P.; Bhattacharya, B. Determination of Activation Energy of Relaxation Events in Composite Solid Propellants by Dynamic Mechanical Analysis. Def. Sci. J. 2014, 64(2): 173-178; DOI: 10.14429/dsj.64.3818.
  • [10] Xu, F.; Aravas, N.; Sofronis, P. Constitutive Modeling of Solid Propellant Materials with Evolving Microstructural Damage. J. Mech. Phys. Solids 2008, 56(5): 2050-2073; DOI: 10.1016/j.jmps.2007.10.013.
  • [11] Zalewski, R.; Pyrz, M.; Wolszakiewicz, T. Modeling of Solid Propellants Viscoplastic Behaviour Using Evolutionary Algorithms. Cent. Eur. J. Energ. Mater. 2010, 7(4): 289-300.
  • [12] Shekhar, H.; Sahasrabudhe, A.D. Viscoelastic Modelling of Solid Rocket Propellants Using Maxwell Fluid Model. Def. Sci. J. 2010, 60(4): 423-427.
  • [13] Shekhar, H.; Kankane, D.K. Viscoelastic Characterization of Different Solid Rocket Propellants Using the Maxwell Spring-Dashpot Model. Cent. Eur. J. Energ. Mater. 2012, 9(3): 189-199.
  • [14] Lewandowski, R.; Chorążyczewski, B. Identification of the Parameters of the Kelvin-Voigt and the Maxwell Fractional Models, Used to Modeling of Viscoelastic Dampers. Comput. Struct. 2010, 88(1-2): 1-17; DOI: 10.1016/j.compstruc.2009.09.001.
  • [15] Findley, N.W.; Lai, S.J.; Onaran, K. Creep and Relaxation of Nonlinear Viscoelastic Materials: with an Introduction to Linear Viscoelasticity. Dover Publications Inc., New York, 1989; ISBN 978-0-486-66016-5.
  • [16] Bihari, K.B.; Rao, N.P.N.; Gupta, M.; Murthy, K.P.S. A Study on Creep Behavior of Composite Solid Propellants Using the Kelvin-Viogt Model. Cent. Eur. J. Energ. Mater. 2017, 14(3): 742-756; DOI: 10.22211/cejem/74195.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f3c47a7-cfe4-4447-a0e4-e69e2c6a22be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.