PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D maps integration based on overlapping regions matching

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a developed method of 3D maps integration based on overlapping regions detection and matching that works without an initial guess about transformation between maps. The presented solution is based on a classic pipeline approach from computer vision that has been applied to the 3D maps integration with multiple improvements related to model extraction and the descriptors matching. The process of finding transformation between maps consists of three steps. The first one is the extraction of the model from one of the maps. Then the initial transformation is estimated between extracted model and another map based on feature extraction, description, and matching. The assumption is that the maps have an overlapping area that can be used during the feature‐based alignment. In the last step, the initial so‐ lution is corrected using local alignment approaches, for example, ICP or NDT. The maps are stored in the octree based representation (octomaps) but during transformation estimation, a point cloud representation is used as well. In addition, the presented method was verified in various experiments: in a simulation, with wheeled robots, and with publicly available datasets. Eventually, the solution can be applied to many robotic applications related to the exploration of unknown environments. Nevertheless, so far it was validated with a group of wheeled robots. Furthermore, the developed method has been implemented and released as a part of the open‐source ROS package 3d_map_server.
Słowa kluczowe
Twórcy
  • Department of Cybernetics and Robotics, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50‑370 Wrocław, Poland
Bibliografia
  • [1] “ROS: robot Operating System”. https://www.ros.org/. Accessed on: 2022‑04‑21.
  • [2] N. Adluru, L. J. Latecki, M. Sobel, and R. Lakaemper, “Merging maps of multiple robots”. In: 2008 19th International Conference on Pattern Recognition, Tampa, FL, USA, 2008, 1–4, 10.1109/ICPR.2008.4761036.
  • [3] I. Andersone, “The Characteristics of the Map Merging Methods: A Survey”, Scientific Journal of Riga Technical University. Computer Sciences, vol. 41, no. 1, 2010, 113–121, 10.2478/v10143‑010‑0032‑8.
  • [4] P. Besl and N. D. McKay, “A method for registration of 3‑D shapes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, 1992, 239–256, 10.1109/34.121791.
  • [5] T. M. Bonanni, B. Della Corte, and G. Grisetti, “3‑D Map Merging on Pose Graphs”, IEEE Robotics and Automation Letters, vol. 2, no. 2, 2017, 1031–1038, 10.1109/LRA.2017.2655139.
  • [6] S. Carpin, “Fast and accurate map merging for multi‑robot systems”, Autonomous Robots, vol. 25, no. 3, 2008, 305–316, 10.1007/s10514‑008‑9097‑4.
  • [7] A. Censi and S. Carpin, “HSM3D: Feature‑less global 6DOF scan‑matching in the Hough/Radon domain”. In: 2009 IEEE International Conference on Robotics and Automation, Kobe, 2009, 3899–3906, 10.1109/ROBOT.2009.5152431.
  • [8] K. G. Derpanis. “Overview of the RANSAC Algorithm”. http://www.cs.yorku.ca/~kosta/CompVis_Notes/ransac.pdf, 2010. Accessed on: 2022‑04‑21.
  • [9] M. Drwiega, “Features Matching based Merging of 3D Maps in Multi‑Robot Systems”. In: 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 2019, 663–668, 10.1109/MMAR.2019.8864711.
  • [10] M. Drwięga. “3d_map_server”. https://github.com/mdrwiega/3d_map_server, March 2022. Accessed on: 2022‑04‑21.
  • [11] A. Ferrein, I. Scholl, T. Neumann, K. Krückel, and S. Schiffer. “A System for Continuous Underground Site Mapping and Exploration”. In: M. Reyhanoglu and G. De Cubber, eds., Unmanned Robotic Systems and Applications. IntechOpen, April 2020.
  • [12] S. Gholami Shahbandi and M. Magnusson, “2D map alignment with region decomposition”, Autonomous Robots, vol. 43, no. 5, 2019, 1117–1136, 10.1007/s10514‑018‑9785‑7.
  • [13] J. Han, P. Yin, Y. He, and F. Gu, “Enhanced ICP for the Registration of Large‑Scale 3D Environment Models: An Experimental Study”, Sensors, vol. 16, no. 2, 2016, 228, 10.3390/s16020228.
  • [14] C. Harris and M. Stephens, “A Combined Corner and Edge Detector”. In: Procedings of the Alvey Vision Conference 1988, Manchester, 1988, 23.1–23.6, 10.5244/C.2.23.
  • [15] A. Hornung. “OctoMap 3D scan dataset ‑Arbeitsgruppe: Autonome Intelligente Systeme”. http://ais.informatik.unifreiburg.de/projects/datasets/octomap/.Accessed on: 2022‑04‑21.
  • [16] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: an efficient probabilistic 3D mapping framework based on octrees”, Autonomous Robots, vol. 34, no. 3, 2013, 189–206, 10.1007/s10514‑012‑9321‑0.
  • [17] J. Jessup, S. N. Givigi, and A. Beaulieu, “Robust and efficient multi‑robot 3D mapping with octree based occupancy grids”. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 2014, 3996–4001, 10.1109/SMC.2014.6974556.
  • [18] K. Konolige, D. Fox, B. Limketkai, J. Ko, and B. Stewart, “Map merging for distributed robot navigation”. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 1, Las Vegas, Nevada, USA, 2003, 212–217, 10.1109/IROS.2003.1250630.
  • [19] H. S. Lee and K. M. Lee, “Multi‑robot SLAM using ceiling vision”. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 2009, 912–917, 10.1109/IROS.2009.5354435.
  • [20] H.‑C. Lee, S.‑H. Lee, M. H. Choi, and B.‑H.Lee, “Probabilistic map merging for multi robot RBPF‑SLAM with unknown initial poses”, Robotica, vol. 30, no. 2, 2012, 205–220, 10.1017/S026357471100049X.
  • [21] H.‑C. Lee, Seung‑Hwan Lee, Tae‑Seok Lee, Doo‑Jin Kim, and B.‑H. Lee, “A survey of map merging techniques for cooperative‑SLAM”.In: 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Daejeon, Korea (South), 2012, 285–287,10.1109/URAI.2012.6462995.
  • [22] K. Lee, C. Jung, and W. Chung, “Accurate calibration of kinematic parameters for two wheel differential mobile robots”, Journal of Mechanical Science and Technology, vol. 25, no. 6, 2011, 1603–1611, 10.1007/s12206‑011‑0334‑y.
  • [23] M. Magnusson, A. Lilienthal, and T. Duckett,“Scan registration for autonomous mining vehicles using 3D‑NDT”, Journal of Field Robotics, vol. 24, no. 10, 2007, 803–827, 10.1002/rob.20204.
  • [24] M. Magnusson, N. Vaskevicius, T. Stoyanov,K. Pathak, and A. Birk, “Beyond points: Evaluating recent 3D scan‑matching algorithms”. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 2015, 3631–3637, 10.1109/ICRA.2015.7139703.
  • [25] R. B. Rusu, “Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments”, KI ‑ Künstliche Intelligenz, vol. 24, no. 4,2010, 345–348, 10.1007/s13218‑010‑0059‑6.
  • [26] R. B. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature Histograms (FPFH) for 3D registration”.In: 2009 IEEE International Conference on Robotics and Automation, Kobe, 2009, 3212–3217,10.1109/ROBOT.2009.5152473.
  • [27] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL)”. In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, 1–4, 10.1109/ICRA.2011.5980567.
  • [28] S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple‑Robot Simultaneous Localization and Mapping: A Review: Multiple‑Robot Simultaneous Localization and Mapping”, Journal of Field Robotics, vol. 33, no. 1, 2016, 3–46,10.1002/rob.21620.
  • [29] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard, “Point feature extraction on 3D range scans taking into account object boundaries”. In: 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, 2601–2608, 10.1109/ICRA.2011.5980187.
  • [30] H. Surmann, N. Berninger, and R. Worst, “3D mapping for multi hybrid robot cooperation”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 2017, 626–633, 10.1109/IROS.2017.8202217.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f3bd201-6913-4af9-a175-7ae46746eae7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.