PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Baltic herring prey selectively on older copepodites of Eurytemora affinis and Limnocalanus macrurus in the Gulf of Riga

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Zooplankton availability is a major factor affecting herring body condition that in turn describes its well-being. As herring feeding is known to be selective, it is relevant to access its preferences upon zooplankton species and particular copepod developmental stages to forecast possible intraspecific competition for resources in the species scarce environment of the Gulf of Riga where herring stock size due to successful recruitment has almost doubled since 1989. This study tries to answer whether the small-sized plankters dominated zooplankton community permits herring to be a selective eater. Also how herring body condition has changed in connection to environment driven zooplankton community changes. The time series of zooplankton abundance and herring condition from 1995–2012 were studied; and a detailed study of herring diet was performed monthly by stomach content analysis during the main feeding season in 2011 and 2012. We found that herring selectively prey on Limnocalanus macrurus and older copepodite stages of Eurytemora affinis, and moreover these were species of whose selected copepodite stages explained most of variation in herring condition factor. The found relationship between herring feeding selectivity and long-term variation of herring condition allows applying spring zooplankton abundance of E. affinis and L. macrurus to estimate favourable feeding conditions for herring, and could also require the revision of currently used model for herring recruitment estimations, where only biomass of E. affinis is taken into account. In recent years, the high condition of herring can be associated with a considerable increase of lipid-rich copepod species L. macrurus.
Czasopismo
Rocznik
Strony
46--53
Opis fizyczny
Bibliogr. 51 poz., tab., wykr.
Twórcy
autor
  • Latvian Institute of Aquatic Ecology, Riga, Latvia
autor
  • Institute of Food Safety, Animal Health and Environment “BIOR” Fish Resources Research Department, Riga, Latvia
autor
  • Institute of Food Safety, Animal Health and Environment “BIOR” Fish Resources Research Department, Riga, Latvia
autor
  • Institute of Food Safety, Animal Health and Environment “BIOR” Fish Resources Research Department, Riga, Latvia
  • Latvian Institute of Aquatic Ecology, Riga, Latvia
Bibliografia
  • 1.Alheit, J., Möllmann, C., Dutz, J., Kornilovs, G., Loewe, P., Mohrholz, V., Wasmund, N., 2005. Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s. ICES J. Mar. Sci. 62, 1205—1215.
  • 2.Arrhenius, F., 1996. Diet composition and food selectivity of 0-group herring (Clupea harengus L.) and sprat (Sprattus sprattus (L.)) in the northern Baltic Sea. ICES J. Mar. Sci. 53, 701—712.
  • 3.Arrhenius, F., Hansson, S., 1993. Food consumption of larval, young and adult herring and sprat in the Baltic Sea. Mar. Ecol. Prog. Ser. 96, 125—137.
  • 4.Arula, T., Ojaveer, H., Shpilev, H., 2012. Individual fecundity of the autumn spawning Baltic herring Clupea harengus membras L. Estonian J. Ecol. 61, 119—134.
  • 5.Berzinsh, V., 1995. Dynamics of hydrological parameters of the Gulf of Riga. In: Ojaveer, E. (Ed.), Ecosystem of the Gulf of Riga Between 1920 and 1990. Estonian Acad. Publ., Tallinn, 8—31.
  • 6.Brown, C., Laland, K., 2003. Social learning in fishes: a review. Fish Fish. 4, 280—288.
  • 7.Cardinale, M., Arrhenius, F., 2000. Decreasing weight-at-age of Atlantic herring (Clupea harengus) from the Baltic Sea between 1986 and 1996: a statistical analysis. ICES J. Mar. Sci. 57, 882—893.
  • 8.Cardinale, M., Möllmann, C., Bartolino, V., Casini, M., Kornilovs, G., Raid, T., Margonski, P., Grzyb, A., Raitaniemi, J., Gröhsler, T., Flinkman, J., 2009. Effect of environmental variability and spawner characteristics on the recruitment of Baltic herring Clupea harengus populations. Mar. Ecol. Prog. Ser. 388, 221—234.
  • 9.Casini, M., Bartolino, V., Molinero, J., Kornilovs, G., 2010. Linking fisheries, trophic interactions and climate: threshold dynamics drive herring Clupea harengus growth in the central Baltic Sea. Mar. Ecol. Prog. Ser. 413, 241—252.
  • 10.Casini, M., Cardinale, M., Hjelm, J., 2006. Interannual variation in herring, Clupea harengus, and sprat, Sprattus sprattus, condition in the central Baltic Sea: what gives the tune? Oikos 112, 638—650.
  • 11.Casini, M., Hjelm, J., Molinero, J.-C., Lovgren, J., Cardinale, M., Bartolino, V., Belgrano, A., Kornilovs, G., 2009. Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proc. Natl. Acad. Sci. 106, 197—202.
  • 12.Drenner, R., 1978. Capture probability: the role of zooplankter escape in the selective feeding of planktivorous fish. J. Fish. Board Can. 35, 1370—1373.
  • 13.Engelhard, G.H., Heino, M., 2006. Climate change and condition of herring (Clupea harengus) explain long-term trends in extent of skipped reproduction. Oecologia 149, 593—603.
  • 14.Flinkman, J., Vuorinen, I., Aro, E., 1992. Planktivorous Baltic herring (Clupea harengus) prey selectively on reproducing copepods and cladocerans. Can. J. Fish. Aquat. Sci. 49, 73—77.
  • 15.Freimane, S.O., 1967. The study of zooplankton population dynamics in the Baltic Sea and the Gulf of Riga using the correlation method. Fish. Res. Baltic Sea 3, 77—96, (in Russian).
  • 16.Freimane, S.O., 1968. The application of Newton's second law and numerical characteristics for studies of zooplankton biology and abundance. Fish. Res. Baltic Sea 4, 46—60, (in Russian).
  • 17.Froese, R., 2006. Cube law, condition factor and weight—length relationships: history, meta-analysis and recommendations. J. Appl. Ichthyol. 22, 241—253.
  • 18.Fulton, T.W., 1904. The Rate of Growth of Fishes. Twenty-Second Annual Report, Part III. Fisheries Board of Scotland, Edinburgh, 141—241.
  • 19.HELCOM, 2013. Manual for marine monitoring in the COMBINE Programme of HELCOM. http://helcom.fi/action-areas/monitoring- and-assessment/manuals-and-guidelines/combine-manual/.
  • 20.Hernroth, L., 1985. Recommendations on methods for marine biological studies in the Baltic Sea. Mesozooplankton biomass assessment. Baltic Mar. Biol. Publ. 10, 1—32.
  • 21.Hothorn, T., Bretz, F., Westfall, P., 2008. Simultaneous inference in general parametric models. Biom. J. 50, 346—363.
  • 22.ICES, 2009. Report of the Baltic Fisheries Assessment Working Group. ICES Document CM 2009\ACOM, 07. 626 pp.
  • 23.ICES, 2013. Report of the ICES/HELCOM Working Group on Integrated Assessments of the Baltic Sea (WGIAB), 8—12 April 2013, Chioggia, Italy. ICES CM 2013/SSGRSP:05. 40 pp.
  • 24.Ikauniece, A., 2001. Long-term abundance dynamics of coastal zooplankton in the Gulf of Riga. Environ. Int. 26, 175—181.
  • 25.Jurgensone, I., Carstensen, J., Ikauniece, A., Kalveka, B., 2011. Long-term changes and controlling factors of phytoplankton community in the Gulf of Riga (Baltic Sea). Estuar. Coast. 34, 1205—1219.
  • 26.Kane, D.D., Gannon, J.E., Culver, D.A., 2004. The status of Limnocalanus macrurus (Copepoda: Calanoida: Centropagidae) in Lake Erie. J. Great Lakes Res. 30, 22—30.
  • 27.Kornilovs, G., Berzinsh, V., Sidrevics, L., 1992. The analysis of mean weight-at-age changes of Baltic herring in the Gulf of Riga. ICES CM 1992/J:24. 1—9.
  • 28.Kornilovs, G., Möllmann, C., Sidrevics, L., Berzins, V., 2004. Fish predation modified climate induced long-term trends of mesozooplankton in a semi-enclosed coastal gulf. ICES CM 2004/L:13. 1—26.
  • 29.Kornilovs, G., Sidrevics, L., Dippner, J.W., 2001. Fish and zooplankton interaction in the Central Baltic Sea. ICES J. Mar. Sci. 58, 579—588.
  • 30.Kotta, J., Lauringson, V., Martin, G., Simm, M., Kotta, I., Herkül, K., Ojaveer, H., 2008. Gulf of Riga and Pärnu Bay. Ecol. Baltic Coast. Water. 217—243.
  • 31.Lankov, A., Ojaveer, H., Simm, M., Põllupüü, M., Möllmann, C., 2010. Feeding ecology of pelagic fish species in the Gulf of Riga (Baltic Sea): the importance of changes in the zooplankton community. J. Fish Biol. 77, 2268—2284.
  • 32.Link, J., 2001. The relationship between stomach contents and maturity state for major northwest Atlantic fishes: new paradigms? J. Fish Biol. 59, 783—794.
  • 33.Margonski, P., Hansson, S., Tomczak, M.T., Grzebielec, R., 2010. Climate influence on Baltic cod, sprat, and herring stock—recruitment relationships. Prog. Oceanogr. 87, 277—288.
  • 34.Möllmann, C., Kornilovs, G., Fetter, M., Köster, F., 2004a. Herring and sprat growth changes in the Central Baltic Sea. ICES CM 2004/ L:27. 1—25.
  • 35.Möllmann, C., Kornilovs, G., Fetter, M., Köster, W.F., 2004b. Feeding ecology of central Baltic Sea herring and sprat. J. Fish Biol. 65, 1563—1581.
  • 36.Möllmann, C., Kornilovs, G., Fetter, M., Köster, W.F., 2005. Climate, zooplankton, and pelagic fish growth in the central Baltic Sea. ICES J. Mar. Sci. 62, 1270—1280.
  • 37.Möllmann, C., Kornilovs, G., Sidrevics, L., 2000. Long-term dynamics of main mesozooplankton species in the central Baltic Sea. J. Plankton Res. 22, 2015—2038.
  • 38.Möllmann, C., Köster, F., 2002. Population dynamics of calanoid copepods and the implications of their predation by clupeid fish in the Central Baltic Sea. J. Plankton Res. 24, 959—977.
  • 39.Ojaveer, E., Lumberg, A., Ojaveer, H., 1998. Highlights of zooplankton dynamics in Estonian waters (Baltic Sea). ICES J. Mar. Sci. 55, 748—755.
  • 40.Pearre, S., 1982. Estimating prey preference by predators: uses of various indices, and a proposal of another based on x2. Can. J. Fish. Aquat. Sci. 39, 914—923.
  • 41.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., the R Development Core Team, 2013. 'nlme: Linear and Nonlinear Mixed Effects Models'. R package version 3.1-111.
  • 42.R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.
  • 43.Rudstam, L., Aneer, G., Hildén, M., 1994. Top-down control in the pelagic Baltic ecosystem. Dana 10, 105—129.
  • 44.Sandström, O., 1980. Selective feeding by Baltic herring. Hydrobiologia 69, 199—207.
  • 45.Slotte, A., 1999. Differential utilization of energy during wintering and spawning migration in Norwegian spring-spawning herring. J. Fish Biol. 54, 338—355.
  • 46.Stipa, T., Tamminen, T., Seppälä, J., 1999. On the creation and maintenance of stratification in the Gulf of Riga. J. Mar. Syst. 23, 27—49.
  • 47.Strøm, K.M., 1946. The ecological niche. Nature 157, 375.
  • 48.UNESCO, 1968. Zooplankton sampling. Monographs on Oceanographic Methodology, vol. 2. UNESCO Press, New York, 174 pp.
  • 49.Vanderploeg, H.A., Cavaletto, J.F., Liebig, J.R., Gardner, W.S., 1998. Limnocalanus macrurus (Copepoda: Calanoida) retains a marine arctic lipid and life cycle strategy in Lake Michigan. J. Plankton Res. 20, 1581—1597.
  • 50.Viitasalo, M., Flinkman, J., Viherluoto, M., 2001. Zooplanktivory in the Baltic Sea: a comparison of prey selectivity by Clupea harengus and Mysis mixta, with reference to prey escape reactions. Mar. Ecol. Prog. Ser. 216, 191—200.
  • 51.Yurkovskis, A., Kostrichkina, E., Ikauniece, A., 1999. Seasonal succession and growth in the plankton communities of the Gulf of Riga in relation to long-term nutrient dynamics. Hydrobiologia 393, 83—94.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f315342-a919-4b19-a339-409d29f50d21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.