PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grain-size characteristics and net transport patterns of surficial sediments in the Zhejiang nearshore area, East China Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spatial variations in grain-size parameters can reflect sediment transport patterns and depositional dynamic environments. Therefore, 616 surficial sediment samples taken from the Zhejiang nearshore area in the East China Sea were analyzed to better understand the net sediment transport pattern in this region. The study area is generally dominated by clayey silt and has relatively coarse mud sediment in the southeast. The sorting coefficient of surface sediment is higher than 1.4, and sediment is poorly sorted throughout the study area. The skewness has a strong correlation with the mean grain-size diameter. The net sediment transport pathways obtained by the grain-size trend analysis indicate several distinct characteristics of the surficial sediment transport. The sediment is transported southward under the action of the stronger southward Zhejiang-Fujian Coastal Current (ZMCC) in winter in the upper part of the nearshore area. Influenced by the obstruction of the Taiwan Warm Current (TWC) and the tidal current, surficial sediment transport vectors display two areas of grain-size trend convergence and indicate the net deposition environment has a high sedimentation rate. However, the transport is mainly toward the north under the control of the prevailing northward ZMCC and the strong TWC in the summer. The sedimentary rate is closely related to the processes of the sediment transport. On the one hand, sediment transportation affects the depositional rate in a different environment. On the other hand, the modern sedimentary rate can reflect indirectly the sediment source and sediment transportation.
Czasopismo
Rocznik
Strony
12--22
Opis fizyczny
Bibliogr. 59 poz., mapa, rys., wykr.
Twórcy
autor
  • School of Earth Sciences, China University of Geosciences, Wuhan, China
  • School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
autor
  • Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources, Qingdao, China
  • Qingdao Institute of Marine Geology, Qingdao, China
autor
  • Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources, Qingdao, China
  • Qingdao Institute of Marine Geology, Qingdao, China
autor
  • Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology, Ministry of Land and Resources, Qingdao, China
  • Qingdao Institute of Marine Geology, Qingdao, China
Bibliografia
  • [1] Andres, M., Wimbush, M., Park, J. H., Chang, K. I., Lim, B. H., Watts, D. R., Ichikawa, H., Teague, W. J., 2008. Observations of Kuroshio flow variations in the East China Sea. J. Geophys. Res. 113 (C5) C05013, 14 pp., http://dx.doi.org/10.1029/2007JC004200.
  • [2] Asselman, N. E. M., 1999. Grain-size trends used to assess the effective discharge for floodplain sedimentation, River Waal, the Netherlands. J. Sediment. Res. A 69 (1), 51-61, http://dx.doi.org/10.2110/jsr.69.51.
  • [3] Balsinha, M., Fernandes, C., Oliveira, A., Rodrigues, A., Taborda, R., 2014. Sediment transport patterns on the Estremadura Spur continental shelf: insights from grain-size trend analysis. J. Sea Res. 93, 28-32, http://dx.doi.org/10.1016/j.seares.2014.04.001.
  • [4] Cartier, A., Héquette, A., 2015. Vertical distribution of longshore sediment transport on barred macrotidal beaches, northern France. Cont. Shelf Res. 93, 1-16, http://dx.doi.org/10.1016/j.csr.2014.11.009.
  • [5] Chen, Z., Saito, Y., Kanai, Y., Wei, T., Li, L., Yao, H., Wang, Z., 2004. Low concentration of heavy metals in the Yangtze estuarine sediments, China: a diluting setting. Estuar. Coast. Shelf Sci. 60 (1), 91-100, http://dx.doi.org/10.1016/j.ecss.2003.11.021.
  • [6] Cheng, P., Gao, S., Bokuniewicz, H., 2004. Net sediment transport patterns over the Bohai Strait based on grain size trend analysis. Estuar. Coast. Shelf Sci. 60 (2), 203-212, http://dx.doi.org/10.1016/j.ecss.2003.12.009.
  • [7] Dai, Z., Fagherazzi, S., Mei, X., Gao, J., 2016. Decline in suspended sediment concentration delivered by the Changjiang (Yangtze) River into the East China Sea between 1956 and 2013. Geomorphology 268, 123-132, http://dx.doi.org/10.1016/j.geomorph.2016.06.009.
  • [8] Demaster, D. J., Mckee, B. A., Nittrouer, C. A., Qian, J., Cheng, G., 1985. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Cont. Shelf Res. 4 (1), 143-158, http://dx.doi.org/10.1016/0278-4343(85)90026-3.
  • [9] Fang, G., Zhao, B., Zhu, Y., 1991. Water volume transport through the Taiwan Strait and the continental shelf of the East China Sea measured with current meters. Elsev. Oceanogr. Ser. 54, 345-358, http://dx.doi.org/10.1016/S0422-9894(08)70107-7.
  • [10] Folk, R. L., 1966. A review of grain-size parameters. Sedimentology 6 (2), 73-93, http://dx.doi.org/10.1111/j.1365-3091.1966.tb01572.x.
  • [11] Gao, S., 1996. A FORTRAN program for grain-size trend analysis to define net sediment transport pathways. Comput. Geosci. 22 (4), 449-452, http://dx.doi.org/10.1016/0098-3004(95)00100-X.
  • [12] Gao, S., Collins, M., 1991. A critique of the “McLaren Method” for defining sediment transport paths. J. Sediment. Petrol. 61 (1), 143-146, http://dx.doi.org/10.1306/D42676A9-2B26-11D7-8648000102C1865D.
  • [13] Gao, S., Collins, M., 1994. Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors” - reply. Sediment. Geol. 90 (1-2), 157-159, http://dx.doi.org/10.1016/0037-0738(94)90023-X.
  • [14] Guo, Z., Yang, Z., Fan, D., Pan, Y., 2003. Seasonal variation of sedimentation in the Changjiang Estuary mud area. J. Geogr. Sci. 13 (3), 348-354, http://dx.doi.org/10.1007/bf02837510.
  • [15] Hu, D., 1984. Upwelling and sedimentation dynamics: I. The role of upwelling in sedimentation in the Huanghai Sea and East China Sea — a description of general features. Chin. J. Oceanol. Limnol. 2 (1), 12-19, http://dx.doi.org/10.1007/BF02888388.
  • [16] Li, J., Wei, H., Zhang, Z., Lu, Y., 2013. A modelling study of interannual variation of Kuroshio intrusion on the shelf of East China Sea. J. Ocean Univ. China 12 (4), 537-548, http://dx.doi.org/10.1007/s11802-013-2203-z.
  • [17] Li, P., Yang, S. L., Milliman, J. D., Xu, K. H., Qin,W. H.,Wu, C. S., Chen, Y. P., Shi, B. W., 2012. Spatial, temporal, and human-induced variations in suspended sediment concentration in the surface waters of the Yangtze Estuary and adjacent coastal areas. Estuar. Coast. 35 (5), 1316-1327, http://dx.doi.org/10.1007/s12237-012-9523-x.
  • [18] Liu, J., Saito, Y., Kong, X., Wang, H., Xiang, L., Wen, C., Nakashima, R., 2010. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last ~13,000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years. Quaternary Sci. Rev. 29 (17-18), 2424-2438, http://dx.doi.org/10.1016/j.quascirev.2010.06.016.
  • [19] Liu, J. P., Li, A. C., Xu, K. H., Velozzi, D. M., Yang, Z. S., Milliman, J. D., DeMaster, D. J., 2006. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Cont. Shelf Res. 26 (17-18), 2141-2156, http://dx.doi.org/10.1016/j.csr.2006.07.013.
  • [20] Liu, J. P., Xu, K. H., Li, A. C., Milliman, J. D., Velozzi, D. M., Xiao, S. B., Yang, Z.S., 2007. Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorphology 85 (3-4), 208-224, http://dx.doi.org/10.1016/j.geomorph.2006.03.023.
  • [21] Liu, S., Shi, X., Fang, X., Dou, Y., Liu, Y., Wang, X., 2014. Spatial and temporal distributions of clay minerals in mud deposits on the inner shelf of the East China Sea: implications for paleoenvironmental changes in the Holocene. Quatern. Int. 349, 270-279, http://dx.doi.org/10.1016/j.quaint.2014.07.016.
  • [22] Liu, X., 1987. Relict sediments in China continental shelf. Mar. Geol. Quat. Geol. 7 (1), 1-14, http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ198701000.
  • [23] Ma, X., Yan, J., Fan, F., 2014. Morphology of submarine barchans and sediment transport in barchans fields off the Dongfang coast in Beibu Gulf. Geomorphology 213 (10), 213-224, http://dx.doi.org/10.1016/j.geomorph.2014.01.010.
  • [24] McCave, I. N., 1978. Grain-size trends and transport along beaches; example from eastern England. Mar. Geol. 28 (1-2), 43-51, http://dx.doi.org/10.1016/0025-3227(78)90092-0.
  • [25] McKee, B. A., Nittrouer, C. A., Demaster, D. J., 1983. Concepts of sediment deposition and accumulation applied to the continental shelf near the mouth of the Yangtze River. Geology 11 (11), 631-633, http://dx.doi.org/10.1130/0091-7613(1983)11<631:COSDAA>2.0.CO;2.
  • [26] McLaren, P., 1981. An interpretation of trends in grain size measures. J. Sediment. Res. 51 (2), 0611-0624, http://dx.doi.org/10.1306/212F7CF2-2B24-11D7-8648000102C1865D.
  • [27] McLaren, P., Bowles, D., 1985. The effects of sediment transport on grain-size distributions. J. Sediment. Res. 55 (4), 0457-0470, http://dx.doi.org/10.1306/212F86FC-2B24-11D7-8648000102C1865D.
  • [28] McManus, J., 1988. Grain size determination and interpretation. In: Tucker, M. (Ed.), Techniques in Sedimentology. Blackwell, Oxford, 63-85, https://ci.nii.ac.jp/naid/10004029583/en.
  • [29] Milliman, J. D., Meade, R. H., 1983. World-wide delivery of river sediment to the oceans. J. Geol. 91 (1), 1-21, http://dx.doi.org/10.1086/628741.
  • [30] Moon, J.-H., Pang, I.-C., Yoon, J.-H., 2009. Response of the Changjiang diluted water around Jeju Island to external forcings: a modeling study of 2002 and 2006. Cont. Shelf Res. 29 (13), 1549-1564, http://dx.doi.org/10.1016/j.csr.2009.04.007.
  • [31] Niino, H., Emery, K. O., 1961. Sediments of shallow portions of East China Sea and South China Sea. Geol. Soc. Am. Bull. 72 (5), 731-762, http://dx.doi.org/10.1130/0016-7606(1961)72[731:SOSPOE]2.0.CO;2.
  • [32] Oldfield, F., Appleby, P. G., Battarbee, R. W., 1978. Alternative 210Pb dating: results from the New Guinea Highlands and Lough Erne. Nature 271 (5643), 339-342, http://dx.doi.org/10.1038/271339a0.
  • [33] Palinkas, C. M., Nittrouer, C. A., Walsh, J. P., 2006. Inner-shelf sedimentation in the Gulf of Papua, New Guinea: a mud-rich shallow shelf setting. J. Coastal Res. 224 (4), 760-772, http://dx.doi.org/10.2112/03-0086.1.
  • [34] Passega, R., 1964. Grain size representation by CM patterns as a geologic tool. J. Sediment. Res. 34 (4), 830-847, http://dx.doi.org/10.1306/74D711A4-2B21-11D7-8648000102C1865D.
  • [35] Pedreros, R., Howa, H. L., Michel, D., 1996. Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas. Mar. Geol. 135 (1-4), 35-49, http://dx.doi.org/10.1016/S0025-3227(96)00042-4.
  • [36] Pejrup, M., 1988. The triangular diagram used for classification of estuarine sediments: a new approach. In: de Boer, P. L., van Gelder, A., Nio, S. D. (Eds.), Tide-Influenced Sedimentary Environments and Facies. Reidel, Dordrecht, 289-300, http://dx.doi.org/10.1007/978-94-015-7762-5_21.
  • [37] Pfitzner, J., Brunskill, G., Zagorskis, I., 2004. 137Cs and excess 210Pb deposition patterns in estuarine and marine sediment in the central region of the Great Barrier Reef Lagoon, north-eastern Australia. J. Environ. Radioactiv. 76 (1-2), 81-102, http://dx.doi.org/10.1016/j.jenvrad.2004.03.020.
  • [38] Qu, T., Hu, D., 1993. Upwelling and sedimentation dynamics II. A simple model. Chin. J. Oceanol. Limnol. 11 (14), 289-384, http://dx.doi.org/10.1007/BF02850633.
  • [39] Rosenberger, K. J., Storlazzi, C. D., Cheriton, O. M., McPhee-Shaw, E. E., 2016. Variability of the internal tide on the southern Monterey Bay continental shelf and associated bottom boundary layer sediment transport. Cont. Shelf Res. 120, 68-81, http://dx.doi.org/10.1016/j.csr.2016.03.016.
  • [40] Roux, J. P. l., 1994. Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors”-comment. Sediment. Geol. 90 (1-2), 153-156, http://dx.doi.org/10.1016/0037-0738(94)90022-1.
  • [41] Saito, Y., Yang, Z., Hori, K., 2001. The Huanghe (Yellow River) and Changjiang (Yangtze River) deltas: a review on their characteristics, evolution and sediment discharge during the Holocene. Geomorphology 41 (2-3), 219-231, http://dx.doi.org/10.1016/S0169-555X(01)00118-0.
  • [42] Shen, H., 1986. A model of genesis of the relict sediment on the East China Sea shelf. Acta Oceanol. Sin. 5 (3), 437-446, http://www.cnki.com.cn/Article/CJFDTotal-SEAE198603013.htm.
  • [43] Shepard, F. P., 1954. Nomenclature based on sand-silt-clay ratios. J. Sediment. Res. 24 (3), 151-158, http://dx.doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D.
  • [44] Sternberg, R. W., Larsen, L. H., Miao, Y. T., 1985. Tidally driven sediment transport on the East China Sea continental shelf. Cont. Shelf Res. 4 (1-2), 105-120, http://dx.doi.org/10.1016/0278-4343(85)90024-X.
  • [45] Su, C.-C., Huh, C.-A., 2002. 210Pb, 137Cs and 239,240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides. Mar. Geol. 183 (1-4), 163-178, http://dx.doi.org/10.1016/S0025-3227(02)00165-2.
  • [46] Su, J. L., 2001. A review of circulation dynamics of the coastal oceans near China. Acta Oceanol. Sin. 23 (4), 1-16, (in Chinese), http://dx.doi.org/10.3321/j.issn:0253-4193.2001.04.001.
  • [47] Wang, L., Li, G., Gao, F., Liu, L., Liu, Y., Dada, O. A., 2014. Sediment records of environmental changes in the south end of the Zhejiang-Fujian coastal mud area during the past 100 years. Chin. J. Oceanol. Limnol. 32 (4), 899-908.
  • [48] Wang, Z.-B., Yang, S.-Y., Zhang, Z.-X., Ri-Hui, L. I.,Wang, H., Lan, X.-H., 2012. The grain size compositions of the surface sediments in the East China Sea: indication for sedimentary environments. Oceanol. Limnol. Sin. 43 (6), 1039-1049, http://dx.doi.org/10.1007/s11783-011-0280-z.
  • [49] Xia, P., Meng, X., Yin, P., Cao, Z., Wang, X., 2011. Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River estuary, Beibu Gulf of South China Sea. Environ. Pollut. 159 (1), 92-99, http://dx.doi.org/10.1016/j.envpol.2010.09.014.
  • [50] Xu, G., Liu, J., Liu, S., Wang, Z., Hu, G., Kong, X., 2016. Modern muddy deposit along the Zhejiang coast in the East China Sea: response to large-scale human projects. Cont. Shelf Res. 130, 68-78, http://dx.doi.org/10.1016/j.csr.2016.10.007.
  • [51] Xu, K., Li, A., Liu, J. P., Milliman, J. D., Yang, Z., Liu, C.-S., Kao, S.-J., Wan, S., Xu, F., 2012. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: a synthesis of the Yangtze dispersal system. Mar. Geol. 291-294, 176-191, http://dx.doi.org/10.1016/j.margeo.2011.06.003.
  • [52] Xu, K., Milliman, J. D., Li, A., Liu, J. P., Kao, S.-J., Wan, S., 2009. Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea. Cont. Shelf Res. 29 (18), 2240-2256, http://dx.doi.org/10.1016/j.csr.2009.08.017.
  • [53] Yamashita, S., Naruse, H., Nakajo, T., 2018. Reconstruction of sediment-transport pathways on a modern microtidal coast by a new grain-size trend analysis method. Prog. Earth Planetary Sci. 5 (1), 18 pp., http://dx.doi.org/10.1186/s40645-018-0166-9.
  • [54] Yanagi, T., Takahashi, S., Hoshika, A., Tanimoto, T., 1996. Seasonal variation in the transport of suspended matter in the East China Sea. J. Oceanogr. 52 (5), 539-552, http://dx.doi.org/10.1007/bf02238320.
  • [55] Yuan, D., Zhu, J., Li, C., Hu, D., 2008. Cross-shelf circulation in the Yellow and East China Seas indicated by MODIS satellite observations. J. Mar. Syst. 70 (1-2), 134-149, http://dx.doi.org/10.1016/j.jmarsys.2007.04.002.
  • [56] Zhang, C., Hong, H., Hu, C., Shang, S., 2011. Evolution of a coastal upwelling event during summer 2004 in the southern Taiwan Strait. Acta Oceanol. Sin. 30 (1), 1-6, http://dx.doi.org/10.1007/s13131-011-0084-9.
  • [57] Zhang, Q., Liu, H., Qin, S., Yang, D., Liu, Z., 2014. The study on seasonal characteristics of water masses in the western East China Sea shelf area. Acta Oceanol. Sin. 33 (11), 64-74, http://dx.doi.org/10.1007/s13131-014-0556-9.
  • [58] Zhang,W., Zheng, J., Ji, X., Hoitink, A. J. F., van der Vegt, M., Zhu, Y., 2013. Surficial sediment distribution and the associated net sediment transport pattern in the Pearl River Estuary, South China. Cont. Shelf Res. 61-62, 41-51, http://dx.doi.org/10.1016/j.csr.2013.04.011.
  • [59] Zheng, Y., Huang, W., 1993. A preliminary analysis on the characteristics of the Kuroshio Frontal Eddy in the East China Sea in spring. Chin. J. Oceanol. Limnol. 11 (3), 276-284, http://dx.doi.org/10.1007/BF02850861.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f31455f-e5e6-4a43-939d-9dcbea673cb8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.