PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of compressed air pressure on geometric structure of AISI 1045 steel surface after turning with the use of MQCL method

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
MQL (Minimum Quantity Lubrication) and MQCL (Minimum Quantity Cooling Lubrication) methods become alternative solutions for dry machining and deluge cooling conditions. Due to a growing interest in MQCL method, this article discusses the impact of compressed air pressure, which is one of the basic parameters of generating emulsion mist used in MQCL method, on the geometric structure of the surface after turning AISI 1045 carbon steel. This paper presents the results of measurements of machined surface roughness parameters Ra, Rz, RSm as well as roughness profiles and Abbot-Firestone curves. It was found that the increase in the compressed air pressure from 1 to 7 MPa causes an increase in the roughness of the machined surface (the lowest values were obtained at a pressure of 1 MPa). An increase of emulsion mass flow rate also causes an increase in the value of selected parameters of roughness of the machined surface.
Twórcy
autor
  • Faculty of Mechanical Engineering, University of Zielona Gora, 4 Prof. Z. Szafrana Street, 65-516 Zielona Gora, Poland
Bibliografia
  • 1. Chinchanikar S., Choudhury S.K. 2014. Hard turning using HiPIMS-coated carbide tools: Wear behavior under dry and minimum quantity lubrication (MQL). Measurement, 55, 536548.
  • 2. Davim J.P., Sreejith P.S., Gomes R., Peixoto C. 2006. Experimental studies on drilling of aluminum (AA1050) under dry, minimum quantity of lubricant, and flood-lubricated conditions. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(10), 16051611.
  • 3. Debnath S., Reddy M.M., Yi Q.S. 2014. Environmental friendly cutting fluids and cooling techniques in machining: a review. Journal of Cleaner Production, 83, 3347.
  • 4. Dhar N.R., Kamruzzaman M., Ahmed M. 2006. Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. Journal of Materials Processing Technology, 172(2), 299304.
  • 5. Hadad M.J., Tawakoli T., Sadeghi M.H., Sadeghi B. 2012. Temperature and energy partition in minimum quantity lubrication-MQL grinding process. International Journal of Machine Tools and Manufacture, 54-55, 1017.
  • 6. Hafenbraedl D., Malkin S. 2001. Technology environmentally correct for intern cylindrical grinding. Machines and Metals Magazine, 426, 4055.
  • 7. Jozwik J., Mika D. 2015. Diagnostics of workpiece surface condition based on cutting tool vibrations during machining. Advances in Science and Technology-Research Journal, 9(26), 5765.
  • 8. Kedare S.B., Borse D.R., Shahane P.T. 2014. Effect of minimum quantity lubrication (MQL) on surface roughness of mild steel of 15HRC on universal milling machine. Procedia Materials Science, 6, 150153.
  • 9. Krolczyk J., Krolczyk G., Legutko S., Napiorkowski J., Hloch S., Foltys J., Tama E. 2015. Material flow optimization – a case study in automotive industry. Tehnicki Vjesnik - Technical Gazette, 22(6), 14471456.
  • 10. Leppert T. 2011. Effect of cooling and lubrication conditions on surface topography and turning process of C45 steel. International Journal of Machine Tools and Manufacture, 51(2) 120126.
  • 11. Marinescu I.D., Rowe W.B., Dimitrov B., Inasaki I. 2004 in: Tribology of Abrasive Machining Processes. William Andrew, USA, 2004.
  • 12. Maruda R.W., Feldshtein E., Legutko S, Królczyk G.M. 2015. Research on emulsion mist generation in the conditions of Minimum Quantity Cooling Lubrication (MQCL). Tehnicki Vjesnik - Technical Gazette, 22(5), 12131218.
  • 13. Maruda R.W., Legutko S., Krolczyk G.M., Hloch S., Michalski M. 2015. An influence of active additives on the formation of selected indicators of the condition of the X10CrNi18-8 stainless steel surface layer in MQCL conditions. International Journal of Surface Science and Engineering. 9(5), 452465.
  • 14. Maruda R.W., Legutko S., Krolczyk G.M., Raos P. 2015. Influence of cooling conditions on the machining process under MQCL and MQL conditions. Tehnicki Vjesnik - Technical Gazette. 22(4), 965970.
  • 15. Park K.H., Olortegui-Yume J., Yoon M.C., Kwon P. 2010. A study on droplets and their distribution for minimum quantity lubrication (MQL). International Journal of Machine Tools and Manufacture, 50(9), 824833.
  • 16. Pusavec F., Krajnik P., Kopac J. 2010. Transitioning to sustainable production – part I: application on machining technologies. Journal of Cleaner Production, 18(2), 174184.
  • 17. Pusavec F., Kramar D., Krajnik P., Kopac J. 2010. Transitioning to sustainable production – part II: evaluation of sustainable machining technologies. Journal of Cleaner Production. 18(12), 12111221.
  • 18. Sadeghi M.H., Hadad M.J., Tawakoli T., Vesali A., Emami M. 2010. An investigation on surface grinding of AISI 4140 hardened steel using minimum quantity lubrication-MQL technique. International Journal of Material Forming, 3(4), 241251.
  • 19. Shiva Sai S., Manoj Kumar K., Ghosh A. 2015. Assessment of spray quality from an external mix nozzle and its impact on SQL grinding performance. International Journal of Machine Tools and Manufacture, 89, 132141.
  • 20. Silva L.R., Bianchi E.C., Catai R.E., Fusse R.Y., Franca T.V., Aguiar P.R. 2005. Study on the behavior of the minimum quantity lubricant – MQL technique under different lubrication and cooling conditions when grinding ABNT 4340 steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 27(2), 192199.
  • 21. Tawakoli T., Azarhoushang B. 2008. Influence of ultrasonic vibrations on dry grinding of soft steel. International Journal of Machine Tools and Manufacture, 48(14), 15851591.
  • 22. Tawakoli T., Hadad M.J., Sadeghi M.H. 2010. Influence of oil mist parameters on minimum quantity lubrication–MQL grinding process. International Journal of Machine Tools and Manufacture. 50(6) (2010) 521531.
  • 23. Tomasik J., Haratym R. 2004. Attempt to apply the parameters in the Abbot-Firestone curve to the description of the microgeometry of precision casting surfaces. Archiwum Odlewnictwa, 4, 532537.
  • 24. Wojciechowski S., Chwalczuk T., Twardowski P., Krolczyk G.M. 2015. Modeling of cutter displacements during ball end milling of inclined surfaces. Archives of Civil and Mechanical Engineering, 15(4), 798805.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f2cdcd2-b9c1-4294-9931-01322017b72c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.