PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of zinc substitution on structural, elastic, magnetic and optical properties of cobalt chromium ferrites

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The polycrystalline Co1−xZnxCr0.5Fe1.5O4 series with (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) has been synthesized by conventional ceramic rout method. The structural and elastic properties have been investigated by X-ray diffractometer and Fourier transform spectroscopy. Both XRD and FTIR confirm the formation of single phase cubic spinel ferrites. The cationic distribution for all samples has been proposed. The lattice parameter, X-ray density, hoping length, bond length, and packing factors–in accompaniment with variations in the zinc concentration–have been studied. The IR band position has been explained by the cations involved in the structure. The elastic moduli such as Young's modulus, bulk modulus, rigidity modulus and Poison's ratio have bee calculated using force constants. Scanning electron microscope (SEM) observation conveys information about the agglomeration of particles. The hysteresis curve obtained from vibrating sample magneto meter (VSM) conveys information about the soft nature of prepared compositions. The saturation magnetization decreases with addition of zinc ions and coercivity is almost zero. An increase in band gap energy has been observed with addition of zinc by Ultraviolet Visible Spectroscopy (UV-VIS), which is due to small crystallite size.
Wydawca
Rocznik
Strony
139--151
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Department of Physics, Lahore College for Women University, Lahore, Pakistan
autor
autor
  • Department of Physics, Lahore College for Women University, Lahore, Pakistan
  • Department of Physics, Punjab University Lahore, Lahore, Pakistan
  • Department of Physics, Punjab University Lahore, Lahore, Pakistan
autor
  • Department of Physics, Punjab University Lahore, Lahore, Pakistan
Bibliografia
  • [1] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater. 2003;15(5):353–89.
  • [2] Ding J, Jain S, Adeyeye A. Static and dynamic properties of one-dimensional linear chain of nanomagnets. J Appl Phys. 2011;109(7):07D301.
  • [3] Rani R, Sharma S, Pirota K, Knobel M, Thakur S, Singh M. Effect of zinc concentration on the magnetic properties of cobalt–zinc nanoferrite. Ceram Int. 2012;38(3):2389–94.
  • [4] Cullity B. Element of X-ray diffraction, Addison- Wesley reading. MA Google Scholar, 1978.
  • [5] Gabal M, Ahmed M. Structural, electrical and magnetic properties of copper-cadmium ferrites prepared from metal oxalates. J Mater Sci. 2005;40(2):387–98.
  • [6] Sharma R, Singhal S. Structural, magnetic and electrical properties of zinc doped nickel ferrite and their application in photo catalytic degradation of methylene blue. Phys B Condens Matter. 2013;414:83–90.
  • [7] Salah L, Moustafa A, Farag IA. Structural characteristics and electrical properties of copper doped manganese ferrite. Ceram Int. 2012;38(7):5605–11.
  • [8] Shaikh P, Kambale R, Rao A, Kolekar Y. Studies on structural and electrical properties of Co 1- x Ni x Fe 1.9 Mn 0.1 O 4 ferrite. J Alloys Compd. 2009;482(1):276–82.
  • [9] Humbe AV, Kounsalye JS, Shisode MV, Jadhav K. Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0. 70- xCuxZn0. 30Fe2O4 spinel ferrite. Ceram Int. 2018;44(5):5466–72.
  • [10] Tatarchuk T, Bououdina M, Paliychuk N, Yaremiy I, Moklyak V. Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J Alloys Compd. 2017;694:777–91.
  • [11] Kadam R, Birajdar A, Alone ST, Shirsath SE. Fabrication of Co0. 5Ni0. 5CrxFe2- xO4 materials via sol–gel method and their characterizations. J Magn Magn Mater. 2013;327:167–71.
  • [12] Robertson J. Elements of X-ray diffraction by BD Cullity. International Union of Crystallography; 1979.
  • [13] Levine B. d-Electron effects on bond susceptibilities and ionicities. Phys Rev B. 1973;7(6):2591.
  • [14] Groń T. Influence of vacancies and mixed valence on the transport processes in solid solutions with the spinel structure. Philos Mag B. 1994;70(1):121–32.
  • [15] Pradeep A, Priyadharsini P, Chandrasekaran G. Sol–gel route of synthesis of nanoparticles of MgFe 2 O 4 and XRD, FTIR and VSM study. J Mag Mag Mater 2008;320(21):2774–9.
  • [16] Modi K, Shah S, Pujara N, Pathak T, Vasoya N, Jhala I. Infrared spectral evolution, elastic, optical and thermodynamic properties study on mechanically milled Ni0. 5Zn0. 5Fe2O4 spinel ferrite. J Mol Struct. 2013;1049:250–62.
  • [17] Pathak T, Buch J, Trivedi U, Joshi H, Modi K. Infrared spectroscopy and elastic properties of nanocrystalline Mg–Mn ferrites prepared by co-precipitation technique. J Nanosci Nanotechnol. 2008;8(8):4181–7.
  • [18] Modi K, Gajera J, Pandya M, Vora G, Joshi H. Far-infrared spectral studies of magnesium and aluminum co-substituted lithium ferrites. Pramana. 2004;62(5):1173–80.
  • [19] Patil V, Shirsath SE, More S, Shukla S, Jadhav K. Effect of zinc substitution on structural and elastic properties of cobalt ferrite. J Alloys Compd. 2009;488(1):199–203.
  • [20] Sanpo N, Wen C, Berndt CC, Wang J. Antibacterial properties of spinel ferrite nanoparticles. In: Microbial pathogens and strategies for combating them: science, technology and education. Spain: Formatex Research Centre; 2013. pp. 239–50.
  • [21] Ali AI, Ahmed MA, Okasha N, Hammam M, Son JY. Effect of the La3+ ions substitution on the magnetic properties of spinal Li-Zn-ferrites at low temperature. J Mater Res Technol. 2013;2(4):356–61.
  • [22] Waldron R. Infrared spectra of ferrites. Physical Review. 1955;99(6):1727.
  • [23] Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, et al. Monodisperse mfe2o4 (m= fe, co, mn) nanoparticles. J Am Chem Soc. 2004;126(1):273–9.
  • [24] Tanaka K, Nakashima S, Fujita K, Hirao K. High magnetization and the Faraday effect for ferromagnetic zinc ferrite thin film. J Phys Condens Matter. 2003;15(30):L469.
  • [25] Murumkar V, Modi K, Jadhav K, Bichile G, Kulkarni R. Magnetic and electrical properties of aluminium and chromium co-substituted yttrium iron garnets. Mater Lett. 1997;32(4):281–5.
  • [26] Polezhaeva O, Yaroshinskaya N, Ivanov V. Synthesis of nanosized ceria with controlled particle sizes and bandgap widths. Russ J Inorg Chem. 2007;52(8):1184–8.
  • [27] Gilleo M. Superexchange interaction in ferromagnetic garnets and spinels which contain randomly incomplete linkages. J Phys Chem Solids. 1960;13(1–2):33–9.
  • [28] Anjum S, Rafique MS, Khaleeq-ur-Rahman M, Siraj K, Usman A, Hussain S, et al. Investigation of induced parallel magnetic anisotropy at low deposition temperature in Ba-hexaferrites thin films. J Magn Magn Mater. 2012;324(5):711–6.
  • [29] R. Arulmurugan, B. Jeyadevan, G. Vaidyanathan and S. Sendhilnathan, "Effect of Zinc Substitution on Co-Zn and Mn-Zn Ferrite Nanoparticles Prepared by Co-Precipitation," Journal of Magnetism and Magnetic Materials, Vol. 288, 2005, pp. 470-477
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f2a9707-1131-47e5-8880-242c2cf5a833
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.