Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Rock masses, especially those with different pre-existing cracks, are prone to instability and failure under tensile loading, resulting in different degrees of engineering disasters. Therefore, to better understand the effect of pre-existing cracks with different dip angles on the tensile instability failure behaviour of rocks, the mechanism of crack initiation, propagation and coalescence in precracked sandstone under radial compression loading is investigated through numerical simulations. The temporal and spatial evolution of acoustic emission (AE) events is investigated by the moment tensor (MT), and the fracture mode of micro-cracks is determined. The results show that the pre-existing cracks weaken the specimens. The strength, crack initiation points and macro-failure modes of the specimens differ significantly depending on the dip angle of the pre-existing crack. For different dip angles of the pre-existing cracks, all the micro-cracks at the crack initiation point are tensile cracks, which are dominant during the whole loading process, and mixed cracks are mainly generated near the upper and lower loading ends after the peak stress. Of the total number of events, more than 75% are tensile cracks; approximately 15% are shear mode cracks; and the remainder consist of mixed mode cracks. The study reveals the instability and failure mechanism of pre-cracked rock, which is of great significance to ensure the long-term stability of rock mass engineering.
Czasopismo
Rocznik
Tom
Strony
447--468
Opis fizyczny
Bibliogr. 38 poz., il., tab.
Twórcy
autor
- China University of Mining and Technology (CUMT), State Key Laboratory for Geomechanics and Deep Underground Engineering, Xuzhou, China
autor
- Zhengzhou University of Industrial Technology, School of Architectural Engineering, Zhengzhou, China
autor
- CUMT, Xuzhou, China
autor
- CUMT, Xuzhou, China
autor
- CUMT, Xuzhou, China
autor
- CUMT, Xuzhou, China
autor
- CUMT, Xuzhou, China
autor
- CUMT, Xuzhou, China
Bibliografia
- [1] D.Y. Li, L.N.Y. Wong, “The Brazilian Disc Test for Rock Mechanics Applications: Review and New Insights”, Rock Mechanics and Rock Engineering, 2013, vol. 46, no. 2, pp. 269-287, DOI: 10.1007/s00603-012-0257-7.
- [2] S.H. Cho, Y. Ogata, K. Kaneko, “Strain-rate dependency of the dynamic tensile strength of rock”, International Journal of Rock Mechanics and Mining Sciences, 2003, vol. 40, no. 5, pp. 763-777, DOI: 10.1016/S1365-1609(03)00072-8.
- [3] L.X. Xiong, X.J. Zhang, Z.Y. Xu, et al., “Scale effect of cement mortar specimens subjected to high temperatures using uniaxial compressive and splitting tensile tests”, Archives of Civil Engineering, 2020, vol. 66, no. 3, pp. 139-155, DOI: 10.24425/ace.2020.134389.
- [4] J. Claesson, B. Bohloli, “Brazilian test: stress field and tensile strength of anisotropic rocks using an analytical solution”, International Journal of Rock Mechanics and Mining Sciences, 2002, vol. 39, no. 8, pp. 991-1004, DOI: 10.1016/S1365-1609(02)00099-0.
- [5] X. Chang, J. Tang, G.Z. Wang, et al., “Mechanical performances of rock-like disc containing circular inclusion subjected to diametral compression”, Archives of Civil and Mechanical Engineering, 2018, vol. 18, no. 2, pp. 356-370, DOI: 10.1016/j.acme.2017.07.008.
- [6] L.X. Xiong, H.Y. Yuan, Y. Zhang, et al., “Experimental and Numerical Study of the Uniaxial Compressive Stress-Strain Relationship of a Rock Mass with Two Parallel Joints”, Archives of Civil Engineering, 2019, vol. 65, no. 2, pp. 67-80, DOI: 10.2478/ace-2019-0019.
- [7] E. Hoek, Z.T. Bieniawski, “Brittle fracture propagation in rock under compression”, International Journal of Fracture, 1965, vol. 1, no. 3, pp. 137-155, DOI: 10.1007/BF00186851.
- [8] Y. Fujii, Y. Ishijima, “Consideration of fracture growth initial fracture at the surface of from an inclined slit and inclined rock and mortar in compression”, International Journal of Rock Mechanics and Mining Sciences, 2004, vol. 41, no. 6, pp. 1035-1041, DOI: 10.1016/j.ijrmms.2004.04.001.
- [9] S.Q. Yang, H.W. Jing, “Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression”, International Journal of Fracture, 2011, vol. 168, no. 2, pp. 227-250, DOI: 10.1007/s10704-010-9576-4.
- [10] T. Liu, B.Q. Lin, Q.L. Zou, et al., “Mechanical behaviors and failure processes of precracked specimens under uniaxial compression: A perspective from microscopic displacement patterns”, Tectonophysics, 2016, vol. 672, pp. 104-120, DOI: 10.1016/j.tecto.2016.01.027.
- [11] Q.B. Lin, P. Cao, H. Wang, et al., “An Experimental Study on Cracking Behavior of Precracked Sandstone Specimens under Seepage Pressure”, Advances in Civil Engineering, 2018, vol. 2018, art. ID 4068918, DOI: 10.1155/2018/4068918.
- [12] X. Chang, X. Zhang, L. Cheng, et al., “Crack path at bedding planes of cracked layered rocks”, Journal of Structural Geology, 2022, vol. 154, art. ID 104504, DOI: 10.1016/j.jsg.2021.104504.
- [13] H. Awaji, S. Sato, “Combined mode fracture toughness measurement by the disk test”, Journal of Engineering Materials and Technology, 1978, vol. 100, no. 2, pp. 175-182, DOI: 10.1115/1.3443468.
- [14] C. Atkinson, R.E. Smelser, J. Sanchez, “Combined mode fracture via the cracked brazilian disk tes”, International Journal of Fracture, 1982, vol. 18, no. 4, pp. 279-291, DOI: 10.1007/BF00015688.
- [15] L. Luo, X. Bi, et al., “Study on Fracture Initiation and Propagation in a Brazilian Disc with a Preexisting Crack by Digital Image Correlation Method”, Advances in Materials Science and Engineering, 2017, vol. 2017, art. ID 2493921, DOI: 10.1155/2017/2493921.
- [16] J. Zhou, Y. J. Zeng, Y.T. Guo, et al., “Effect of natural filling fracture on the cracking process of shale Brazilian disc containing a central straight notched flaw”, Journal of Petroleum Science and Engineering, 2021, vol. 196, art. ID 107993, DOI: 10.1016/j.petrol.2020.107993.
- [17] N. Erarslan, D.J. Williams, “Mixed-Mode Fracturing of Rocks Under Static and Cyclic Loading”, Rock Mechanics and Rock Engineering, 2013, vol. 46, no. 5, pp. 1035-1052, DOI: 10.1007/s00603-012-0303-5.
- [18] Y. Tang, G.B. Xu, Y. Yan, et al., “Thermal Cracking Analysis of Microbial Cemented Sand under Various Strains Based on the DEM”, Advances in Materials Science and Engineering, 2018, vol. 2018, art. ID7528746, DOI: 10.1155/2018/7528746.
- [19] A. Abolfazl, F.M. Mohammad, Y.B. Alireza, et al., “DEM simulation of confining pressure effects on crack opening displacement in hydraulic fracturing”, International Journal of Mining Science and Technology, 2016, vol. 26, no. 4, pp. 557-561, DOI: 10.1016/j.ijmst.2016.05.004.
- [20] M.P.J. Schöpfer, S. Abe, C. Childs, et al., “The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: Insights from DEM modelling”, International Journal of Rock Mechanics and Mining Sciences, 2009, vol. 46, no. 2, pp. 250-261, DOI: 10.1016/j.ijrmms.2008.03.009.
- [21] M.M. Wu, R. Huang, J.F. Wang, “DEM simulations of cemented sands with a statistical representation of micro-bond parameters”, Powder Technology, 2021, vol. 379, pp. 96-107, DOI: 10.1016/j.powtec.2020.10.047.
- [22] N. Casas, G. Mollon, A. Daouadji, “DEM Analyses of Cemented Granular Fault Gouges at the Onset of Seismic Sliding: Peak Strength, Development of Shear Zones and Kinematics”, Pure and Applied Geophysics, 2022, vol. 179, no. 2, pp. 679-707, DOI: 10.1007/s00024-021-02934-5.
- [23] Q. Geng, F. He, Z.Y. Lu, et al., “Geometry evolution of mesoscopic mechanical structures during the rock fragmentation process induced by tunnel boring machine (TBM) cutters”, Royal Society Open Science, 2022, vol. 9, no. 1, art. ID 211630, DOI: 10.1098/rsos.211630.
- [24] X.J. Hu, X.N. Gong, H.B. Hu, et al., “Cracking behavior and acoustic emission characteristics of heterogeneous granite with double pre-existing filled flaws and a circular hole under uniaxial compression: Insights from grain-based discrete element method modeling”, Bulletin of Engineering Geology and the Environment, 2022, vol. 81, no. 4, art. ID 162, DOI: 10.1007/s10064-022-02665-4.
- [25] J.F. Hazzard, R.P. Young, “Moment tensors and micromechanical models”, Tectonophysics, 2002, vol. 365, no. 1-3, pp. 181-197, DOI: 10.1016/S0040-1951(02)00384-0.
- [26] D.O. Potyondy, P.A. Cundall, “A bonded-particle model for rock”, International Journal of Rock Mechanics and Mining Sciences, 2004, vol. 41, no. 8, pp. 1329-1364, DOI: 10.1016/j.ijrmms.2004.09.011.
- [27] S.Q. Yang, Y.H. Huang, P G. Ranjith, et al., “Discrete element modeling on the crack evolution behavior of brittle sandstone containing three fissures under uniaxial compression”, Acta Mechanica Sinica, 2015, vol. 31, no. 6, pp. 871-889, DOI: 10.1007/s10409-015-0444-3.
- [28] D. Huang, T.T. Zhu, “Experimental and numerical study on the strength and hybrid fracture of sandstone under tension-shear stress”, Engineering Fracture Mechanics, 2018, vol. 200, pp. 387-400, DOI: 10.1016/j.engfracmech.2018.08.012.
- [29] Y. Wang, F. Cui, “Energy evolution mechanism in process of Sandstone failure and energy strength criterion”, Journal of Applied Geophysics, 2018, vol. 154, pp. 21-28, DOI: 10.1016/j.jappgeo.2018.04.025.
- [30] B. Feignier, R.P. Young, “Moment tensor inversion of induced microseisnmic events: Evidence of non-shear failures in the -4 < M < -2 moment magnitude range”, Geophysical Research Letters, 1992, vol. 19, no. 14, pp. 1503-1506, DOI: 10.1029/92gl01130.
- [31] Z. Zhou, S.X. Chen, Z.J. Dai, et al., “Study on strength softening law of Cenozoic red sandstone based on point load test”, Rock and Soil Mechanics, 2021, vol. 42, no. 11, pp. 2997-3007, DOI: 10.16285/j.rsm.2021.0300.
- [32] C.H. Chen, C.S. Chen, J.H. Wu, “Fracture toughness analysis on cracked ring disks of anisotropic rock”, Rock Mechanics and Rock Engineering, 2008, vol. 41, pp. 539-562, DOI: 10.1007/s00603-007-0152-9.
- [33] H. Amrollahi, A. Baghbanan, H. Hashemolhosseini, “Measuring fracture toughness of crystalline marbles under modes I and II and mixed mode I-II loading conditions using CCNBD and HCCD specimens”, International Journal of Rock Mechanics and Mining Sciences, 2011, vol. 48, no. 7, pp. 1123-1134, DOI: 10.1016/j.ijrmms.2011.06.015.
- [34] J.P. Liu, Y.H. Li, S.D. Xu, et al., “Moment tensor analysis of acoustic emission for cracking mechanisms in rock with a pre-cut circular hole under uniaxial compression”, Engineering Fracture Mechanics, 2015, vol. 135, pp. 206-218, DOI: 10.1016/j.engfracmech.2015.01.006.
- [35] S.D. Xu, Y.H. Li, J.P. Liu, “Detection of cracking and damage mechanisms in brittle granites by moment tensor analysis of acoustic emission signals”, Acoustical Physics, 2017, vol. 63, no. 3, pp. 359-367, DOI: 10.1134/S1063771017030137.
- [36] V.B. Smirnov, T.I. Kartseva, A.V. Ponomarev, et al., “On the Relationship between the Omori and Gutenberg-Richter Parameters in Aftershock Sequences”, Izvestiya Physics of the Solid Earth, 2020, vol. 56, no. 5, pp. 605-622, DOI: 10.1134/S1069351320050110.
- [37] J.S. Kim, K.S. Lee, W.J. Cho, et al., “A Comparative Evaluation of Stress-Strain and Acoustic Emission Methods for Quantitative Damage Assessments of Brittle Rock”, Rock Mechanics and Rock Engineering, 2015, vol. 48, no. 2, pp. 495-508, DOI: 10.1007/s00603-014-0590-0.
- [38] A. Ghazvinian, H.R. Nejati, V. Sarfarazi, et al., “Mixed mode crack propagation in low brittle rock-like materials”, Arabian Journal of Geosciences, 2013, vol. 6, no. 11, pp. 4435-4444, DOI: 10.1007/s12517-012-0681-8.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f263b97-af5d-4a8b-92c3-2ad7acecd631