PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influences of stress states and loading directions on the anisotropic fracture of magnesium alloy AZ31B sheet under tension-dominated forming conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The crystallographic textures of metal sheet induced by the rolling process cause its anisotropic fracture behavior via plasticity anisotropy. This research aimed to characterize the anisotropic fracture behavior of magnesium alloy AZ31B sheet during the conventional tension-dominated forming conditions. Four specimens with different shapes were designed to cover diverse stress states, and were respectively tension-tested to fracture along the rolling direction (RD), diagonal direction (DD), and transverse direction (TD) of rolled sheet. Almost all specimens failed in the shear fracture mode with slight necking localization. The distinct differences among load response, strain distribution as well fracture strain for three directions revealed the severe anisotropic fracture characteristic. To characterize the fracture anisotropy, the isotropic modified Mohr–Coulomb (MMC) fracture criterion was revised into an anisotropic one by considering the effect of loading direction. The updated unified fracture model together with the Yld2000-3d anisotropic yield function had better performances in describing load responses of tension tests for scaled modified compact-tension (SMCT) specimens under three loading directions, especially blindly predicting their crack locations. Three SMCT specimens all failed due to the tension-dominated stress state with the stress triaxiality higher than 1/3. As a comparison, the isotropic MMC model separately calibrated by tests along the RD, DD, and TD can only predict the fracture behavior of SMCT specimen in the corresponding loading direction, but it failed to judge the fracture features of other two directions.
Rocznik
Strony
art. no. e213, 2022
Opis fizyczny
Bibliogr. 25 poz., fot., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Beijing Key Laboratory of Lightweight Metal Forming, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Beijing Key Laboratory of Lightweight Metal Forming, Beijing 100083, China
autor
  • Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China
autor
  • Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Beijing Key Laboratory of Lightweight Metal Forming, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Beijing Key Laboratory of Lightweight Metal Forming, Beijing 100083, China
Bibliografia
  • [1] Li Y, Luo M, Gerlach J, Wierzbicki T. Prediction of shear-induced fracture in sheet metal forming. J Mater Process Technol. 2010;210:1858–69. https://doi.org/10.1016/j.jmatprotec.2010.06.021.
  • [2] Park N, Huh H, Yoon JW. Anisotropic fracture forming limit diagram considering non-directionality of the equi-biaxial fracture strain. Int J Solids Struct. 2018;151:181–94. https://doi.org/10.1016/j.ijsolstr.2018.01.009.
  • [3] Charoensuk K, Panich S, Uthaisangsuk V. Damage initiation and fracture loci for advanced high strength steel sheets taking into account anisotropic behaviour. J Mater Process Technol.2017;248:218–35. https://doi.org/10.1016/j.jmatprotec.2017.05.035.
  • [4] Gu B, He J, Li SH, Lin ZQ. Anisotropic fracture modeling of sheet metals: From in-plane to out-of-plane. Int J Solids Struct. 2020;182:112–40. https://doi.org/10.1016/j.ijsolstr.2019.08.004.
  • [5] Li SH, He J, Gu B, Zeng D, Xia ZC, Zhao YX, Lin ZQ. Anisotropic fracture of advanced high strength steel sheets: experiment and theory. Int J Plast. 2018;103:95–118. https://doi.org/10.1016/j.ijplas.2018.01.003.
  • [6] Habib SA, Lloyd JT, Meredith CS, Khan AS, Schoenfeld SE. Fracture of an anisotropic rare-earth-containing magnesium alloy (ZEK100) at different stress states and strain rates: Experiments and modeling. Int J Plast. 2019;122:285–318. https://doi.org/10.1016/j.ijplas.2019.07.011.
  • [7] Qian LY, Fang G, Zeng P. Modeling of the ductile fracture during the sheet forming of aluminum alloy considering non-associated constitutive characteristic. Int J Mech Sci. 2017;126:55–66. https://doi.org/10.1016/j.ijmecsci.2017.03.013.
  • [8] Basalt S, Panda SK. Failure strains of anisotropic thin sheet metals: experimental evaluation and theoretical prediction. Int J Mech Sci. 2019;151:356–74. https://doi.org/10.1016/j.ijmecsci.2018.10.065.
  • [9] Safaei M, Zang SL, Lee MG, De Waele W. Evaluation of anisotropic constitutive models: mixed anisotropic hardening and nonassociated flow rule approach. Int J Mech Sci. 2013;73:53–68. https://doi.org/10.1016/j.ijmecsci.2013.04.003.
  • [10] Li H, Fu MW, Lu J, Yang H. Ductile fracture: experiments and computations. Int J Plast. 2011;27(2):147–80. https://doi.org/10.1016/j.ijplas.2010.04.001.
  • [11] Malcher L, Pires FMA, de Sa JMAC. An extended GTN model for ductile fracture under high and low stress triaxiality. Int J Plast. 2014;54:193–228. https://doi.org/10.1016/j.ijplas.2013.08.015.
  • [12] Wu H, Xu WC, Shan DB, Jin BC. An extended GTN model for low stress triaxiality and application in spinning forming. J Mater Process Technol. 2019;263:112–28. https:// doi. org/ 10. 1016/j.jmatprotec.2018.07.032.
  • [13] Brünig M, Gerke S, Schmidt M. Damage and failure at negative stress triaxialities: experiments, modeling and numerical simulations. Int J Plast. 2018;102:70–82. https://doi.org/10.1016/j.ijplas.2017.12.003.
  • [14] Bai YL, Wierzbicki T. Application of extended Mohr–Coulomb criterion to ductile fracture. Int J Fract. 2010;161(1):1–20. https://doi.org/10.1007/s10704-009-9422-8.
  • [15] Lou YS, Yoon JW, Huh H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int J Plast. 2014;54:56–80. https://doi.org/10.1063/1.4850037.
  • [16] Mu L, Zang Y, Wang Y, Li XL, Stemler PMA. Phenomenological uncoupled ductile fracture model considering different void deformation modes for sheet metal forming. Int J Mech Sci. 2018;141:408–23. https://doi.org/10.1016/j.ijmecsci.2018.04.025.
  • [17] Talebi-Ghadikolaee H, Naeini HM, Mirnia MJ, Mirzai MA, Alexandrov S, Zeinali MS. Modeling of ductile damage evolution in roll forming of U-channel sections. J Mater Process Technol. 2020;283: 116690. https:// doi. org/ 10. 1016/j. jmatp rotec. 2020.116690.
  • [18] Steglich D, Wafai H, Besson J. Interaction between anisotropic plastic deformation and damage evolution in Al 2198 sheet metal.Eng Fract Mech. 2010;77(17):3501–18. https://doi.org/10.1016/j.engfracmech.2010.08.021.
  • [19] Luo M, Dunand M, Mohr D. Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading—part II: ductile fracture. Int J Plast. 2012;36:34–49. https://doi.org/10.1016/j.ijplas.2012.03.003.
  • [20] Gu GY, Mohr D. Anisotropic Hosford–Coulomb fracture initiation model: theory and application. Eng Fract Mech. 2015;147:480–97. https://doi.org/10.1016/j.engfracmech.2015.08.004.
  • [21] Shen FH, Münstermann S, Lian JH. Investigation on the ductile fracture of high-strength pipeline steels using a partial anisotropic damage mechanics model. Eng Fract Mech. 2020;227: 106900. https://doi.org/10.1016/j.engfracmech.2020.106900.
  • [22] Li ZG, Yang HF, Liu JG. Comparative study on yield behavior and non-associated yield criteria of AZ31B and ZK61 M magnesium alloys. Mater Sci Eng A. 2019;759:329–45. https://doi.org/10.1016/j.msea.2019.05.053.
  • [23] Dunand M, Maertens AP, Luo M, Mohr D. Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading—part I: plasticity. Int J Plast. 2012;36:34–49. https://doi.org/10.1016/j.ijplas.2012.03.003.
  • [24] Qian LY, Ji WT, Sun CY, Fang G, Lian JH. Prediction of Edge fracture during hole-flanging of advanced high-strength steel considering blanking pre-damage. Eng Fract Mech. 2021;248:107721. https://doi.org/10.1016/j.engfracmech.2021.107721.
  • [25] Boyce BL, Kramer SLB, Fang HE, et al. The Sandia fracture challenge: blind round robin predictions of ductile tearing. Int J Fract. 2014;186(1–2):5–68. https://doi.org/10.1007/s10704-013-9904-6.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f1fec75-ba0b-402a-bbee-6863d4b96ed3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.