PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ temperatury na wytrzymałość i sorpcyjność betonów uzyskanych z alternatywnego kruszywa grubego

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
A study of temperature effect on strength and sorptivity of concretes made with alternate coarse aggregates
Języki publikacji
PL EN
Abstrakty
PL
Celem pracy było określenie zmian wytrzymałości i sorpcyjności betonu poddanego działaniu wysokich temperatur. Badano wpływ klasy betonu, temperatury i warunków chłodzenia próbek betonów wykonanych z kruszyw: kwarcowego, skaleniowego oraz granitowego. Wyniki pokazały, że rodzaj kruszywa ma znaczny wpływ na wytrzymałość betonu. Spadek wytrzymałości rośnie wraz ze wzrostem temperatury której działaniu poddany został beton, niezależnie od jego klasy. Zauważono również znacznie większe spadki wytrzymałości w przypadku próbek chłodzonych w wodzie w porównaniu z betonami chłodzonymi w powietrzu albo w piecu. Sorpcyjność betonu poddanego działaniu temperatury, niezależnie od rodzaju użytego kruszywa, wzrastała wraz ze wzrostem temperatury oraz malała wraz ze wzrostem klasy betonu. Sorpcyjność betonów z kruszywem granitowym jest niższa w porównaniu z betonami z kruszywem skaleniowym oraz kwarcowym. Badania wykazały, że z punktu widzenia wytrzymałości i ognioodporności, kruszywo kwarcowe jest lepsze niż kruszywo skaleniowe.
EN
This paper aims at estimating the changes in strength and water sorptivity when concrete is subjected to elevated temperatures. The parameters of investigation included grade of concrete, temperature and condition of concrete specimens, treatment prior to testing . The influence of these parameters on concretes made of quartz, feldspar and crushed granite as coarse aggregates is investigated. It was found from this study that the type of coarse aggregate has a significant effect on the compressive strength. The loss of strength increased with the increase of temperature for all the grades of concrete. It was also noted that the loss of compressive strength of heated concrete is found significant in specimens which were water quenching after heating as compared to those tested after air cooling or in hot condition. It was observed that the water sorptivity decreased with increase of concrete grade and increased with temperature in the case of concretes made with varying types of coarse aggregates without exception. Sorptivity is less in concretes containing crushed granite aggregate compared to those made of quartz and feldspar as coarse aggregates. It was found that quartz is a more suitable alternative coarse aggregate than feldspar from strength and fire resistance point of view.
Czasopismo
Rocznik
Strony
239--251
Opis fizyczny
Bibliogr. 32 poz., il., tab.
Twórcy
autor
  • Department of Civil Engineering, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana State, India
autor
  • Department of Civil Engineering, National Institute of Technology, Warangal, Telangana State, India
Bibliografia
  • 1. Toumi, B., Resheidat, M., Guemmadi, Z and Chabil, H.(2009).Coupled Effect of High Temperature and Heating Time on the Residual Strength of Normal and High-Strength Concretes. Jordan Journal of Civil Engineering, 3(4), 322-330.
  • 2. Heikal, M. Effect of Temperature on the Physico-Mechanical and Mineralogical Properties of HomraPozzolanic Cement Pastes, Cem. Concr. Res., 30, 1835-1839 (2000).
  • 3. Ali, F., Nadjai, A., Silcock, G. and Abu-Tair, A. (2004). Outcomes of a Major Research on Fire Resistance of Concrete Columns. Fire Safety Journal. 39(6), 433-445.
  • 4. Kalifa, P., Menneteau, D.F. and Quenard, D. Cem. Concr. Res., 30, 1915-1927 (2000).
  • 5. Luccioni, B.M., Figueroa, M.I. and Danesi, R.F. (2003).Thermo-mechanic Model for Concrete Exposed to Elevated Temperatures. Engineering Structures, 25 (6), 729-742.
  • 6. Omer, A. (2007). Effects of Elevated Temperatures on Properties of Concrete. Fire Safety Journal, 42 (6), 516-522.
  • 7. Chan, Y.N., Peng, G.F. and Anson, M. (1999). Residual Strength and Pore Structure of High-Strength Concrete and Normal Strength Concrete after Exposure to High Temperatures. Cement and Concrete Composites, 21 (1), 23-27.
  • 8. Pathan, M.A., and Jammu, M.A.(2012) Compressive Strength Of Conventional Concrete And High Strength Concrete With Temperature Effect, International Journal of Advanced Engineering Research and Studies, 1 (3), 101-102.
  • 9. Wang H.Y. (2008). The effects of elevated temperature on cement paste containing GGBFS, Cement and Concrete Composites, 30 (10), 992-999.
  • 10. Sha, W and Pereira, B. (2001) “Differential scanning calorimetry study of ordinary Portland cement paste containing metakaolin and theoretical approach of metakaolin activity.” Cement Concrete Composites. 23, 455-461.
  • 11. Malhotra H.L. (1956) Effect of temperature on the compressive strength of concrete. Magazine of Concrete Research, 8 (23), 85-94.
  • 12. Venecanin S.D. (1990) “Thermal incompatibility of concrete components and thermal properties of carbonate rocks”. ACI Material Journal, 87(6), 602-607.
  • 13. PothaRaju, M., Shobha, M. and Rambabu, K. (1993). Flexural strength of fly ash concrete under elevated temperatures. Magazine of Concrete Research, 56 (2), 83-88.
  • 14. PothaRaju M. and JanakiRao. A. (2001) Effect of temperature on residual compressive strength on fly ash concrete. Indian Concrete Journal, 75 (5), 347-352.
  • 15. Noumowe, A. N. (2003) Temperature Distribution and Mechanical Properties of High-Strength Silica Fume Concrete at Temperatures up to 200°C. ACI Materials Journal, 100 (4), 326-330.
  • 16. Thienel, K.Ch. and Rostasy, F. S (2003). Strength of concrete subjected to high temperature and biaxial stress: Experiments and modelling. Materials and structures, 28 (10), 575-581.
  • 17. Hossain, K.M.A., and Mohamed Lachemi (2004). Residual Strength and Durability of Volcanic Ash Concrete Exposed to High Temperature. ACI Materials Journal, 101 (6), 493-500.
  • 18. Cheng, F.P., Kodur, V.K.R. and Wang, T.C. (2004).Stress-Strain Curves for High Strength Concrete at Elevated Temperatures, Journal of Materials in Civil Engineering, 16 (1), 84-90.
  • 19. Reinhardt, H.W., and Stegmaier, M (2006). Self-Consolidating Concrete in Fire. ACI Materials Journal, 103 (2), 130-135.
  • 20. Kodur, V.K.R. and Phan, L (2007). Critical factors governing the fire performance of high strength concrete systems. Fire Safety Journal, 42 (6), 482–488.
  • 21. Sancak, Y.E, Sari, D, Simsek, O. (2008). Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and super plasticizer. ACI Materials Journal, 95 (4), 395-406.
  • 22. Morsy, M.S., Alsayed, S.H., and Aqel, M. (2010). Effect of Elevated Temperature on Mechanical Properties and Microstructure of Silica Flour Concrete. International Journal of Civil & Environmental Engineering, 10 (1), 1-5.
  • 23. Krishna Rao, M.V., Shobha, M., and Dakshina Murthy, N.R. (2011). Effect of Elevated Temperature on Strength of Differently Cured Concretes- An Experimental Study. Asian Journal of Civil Engineering (Building and Housing), 12 (1), 73-85.
  • 24. Koksal, F., Gencel, O., Brostow, W., and HaggLobland, H. E. (2012). Effect of high temperature on mechanical and physical properties of lightweight cement based refractory including expanded vermiculite. Materials Research Innovations, 16 (1), 7-13.
  • 25. Balakrishnaiah, D., Balaji, K.V.G.D., and SrinivasaRao, P. (2013). Study of Mechanical Properties of Concrete at Elevated Temperatures - A Review. IJRET: International Journal of Research in Engineering and Technology, 2 (8), 317-328.
  • 26. IS: 12269-2013. Indian Standard Specification for Ordinary Portland cement-53 Grade (First Revision), Bureau of Indian Standards, New Delhi.
  • 27. IS: 383-1970 (Reaffirmed 1997). Indian Standard Specification for coarse and fine Aggregates from Natural Source for concrete, Bureau of Indian Standards, New Delhi.
  • 28. IS: 9103-1999Indian Standard Specifi cation for Concrete Admixtures, Bureau of Indian Standards, New Delhi.
  • 29. IS: 10262-2009 Indian Standard Concrete Mix Proportioning-Guidelines (First Revision). Bureau of Indian Standards, New Delhi.
  • 30. Krishna Raju, N. Design of Concrete Mixes, 4th Edition (2009): CBS Publishers & Distributors, New Delhi.
  • 31. Lea, F.M (Edited by Hewlett, P.C). Lea’s Chemistry of Cement and Concrete (Fourth Edition), Elsevier Butterworth-Heinemann, 2004, p. 977.
  • 32. Neville, A. M., Properties of Concrete, 5th edition, Pearson Education 2011, p. 148.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f1a0976-a118-4e02-bdf7-eb2e378bf4d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.