PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact Tests of UHSS Steel Welded Joints Using the Drop - Tower Impact Drop Method

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article characterizes the impact test method using Drop-Tower Impact Test with the registration of the value of force and energy of breaking. Based on sources, the possibilities and scope of the current application of this method were determined and the current state of knowledge on the results of these tests was reviewed. In order to determine the possibility of using the method in impact tests of high strength steel joints, investigations of hybrid PTA - GMA welding conditions on impact strength of joints of MART S1300QL steel were carried out. In particular, the influence of t8/5 cooling time on the impact strength of welded joints by the Drop - Tower Impact Test method was determined. It has been shown that the use of dropping machine with computer-based registration of breaking force and energy values was possible in the case of impact strength testing of UHSS welded joints and enabled precise analysis of the energy distribution dynamics absorbed by the tested.
Rocznik
Strony
19--31
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Poland
Bibliografia
  • 1. Górka J. and Stano S., Microstructure and properties of hybrid laser arc welded joints (laser beam-MAG) in thermo-mechanical control processed S700MC Steel, Metals, 8(2), (2018) 132.
  • 2. Pańcikiewicz K., Zielińska-Lipiec A., Tasak E., Cracking of high-strength steel welded joints Adv. Mater. Sci., 13(3), (2013), 76–85
  • 3. Tuz L., Evaluation of microstructure and selected mechanical properties of laser beam welded S690QL high-strength steel, Adv. Mater. Sci., 18(3), (2018), 34–42.
  • 4. Tuz L., Sulikowski K., Ocena możliwości spawania stali wysokowytrzymałych ulepszanych cieplnie, Przegląd Spaw. - Weld. Technol. Rev., 90(4), (2018), 9–13.
  • 5. Winczek J., Gawrońska E., Gucwa M., Sczygiol N., Theoretical and experimental investigation of temperature and phase transformation during SAW overlaying, Appl. Sci., 9(7), (2019), 1–17.
  • 6. Hebert M., Rousseau C. E., Shukla A., Shock loading and drop weight impact response of glass reinforced polymer composites, Compos. Struct., 84(3), (2008), 199–208.
  • 7. ASTM D7136/D7136M - 12, Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event, (2005).
  • 8. Liu H., Falzon B. G., Tan W., Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates, Compos. Part B Eng., 136, (2018), 101–118.
  • 9. Sevkat E., Liaw B. M., Delale F., Raju B. B., Drop-weight impact responses of woven hybrid glass-graphite/toughened epoxy composites, ASME Int. Mech. Eng. Congr. Expo. Proc., 12(8), (2009), 223–233.
  • 10. Ramachandra S., Sudheer Kumar P., Ramamurty U.,Impact energy absorption in an Al foam at low velocities, Scr. Mater., 49(8), (2003), 741–745.
  • 11. Harrigan J. J., Reid S. R., Peng C., Inertia effects in impact energy absorbing materials and structures, Int. J. Impact Eng., 22(9), (1999), 955–979.
  • 12. Yoo D. Y., Yoon Y. S., Banthia N., Flexural response of steel-fiber-reinforced concrete beams Effects of strength, fiber content, and strain-rate, Cem. Concr. Compos., 64, (2015), 84–92.
  • 13. Skoczylas J., Samborski S., Kłonica M., Experimental Study on Static and Dynamic Fracture Toughness of Cured Epoxy Resins, Adv. Sci. Technol. Res. J., 13(1), (2019), 122–127.
  • 14. Mazar Atabaki M., Ma J., Liu W., Kovacevic R., Pore formation and its mitigation during hybrid laser/arc welding of advanced high strength steel, Mater. Des., 67, (2015), 509–521.
  • 15. Guo W., Crowther D., Francis J. A., Thompson A., Liu Z., Li L., Microstructure and mechanical properties of laser welded S960 high strength steel, Mater. Des., 85, (2015), 534–548.
  • 16. Haslberger P., Holly S., Ernst W., Schnitzer R., Microstructure and mechanical properties of high-strength steel welding consumables with a minimum yield strength of 1100 MPa, J. Mater. Sci., 53(9), 2018, 6968-6979.
  • 17. Węglowski M.S., Zeman M., Grocholewski A., Effect of welding thermal cycles on microstructure and mechanical properties of simulated heat affected zone for a Weldoc 1300 ultra-high strength alloy steel, Arch. Metall. Mater., 61(1), (2016), 127–132.
  • 18. Kurc-Lisiecka A., Piwnik J., Lisiecki A., Laser welding of new grade of advanced high strengh steel STRENX 1100 MC, Arch. Metall. Mater., 62(3), (2017), 1651–1657.
  • 19. Gáspár M., Sisodia R., Improving the HAZ toughness of Q+T high strength steels by post weld heat treatment, in IOP Conference Series: Materials Science and Engineering, 426, (2018), 012012.
  • 20. Su G., Gao X., Zhang D., Du L., Hu J., Liu Z., Impact of Reversed Austenite on the Impact Toughness of the High-Strength Steel of Low Carbon Medium Manganese, J. Miner., 70(5), (2018), 672–679.
  • 21. Nowacki J., Sajek A., Matkowski P., The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding, Arch. Civ. Mech. Eng., 16, (2016), 777–783
  • 22. Szulc J., Chmielewski T., Pilat Z., Zrobotyzowane spawanie hybrydowe Plazma + MAG stali S700 MC Robotic hybrid Plasma + MAG welding of S700 MC steel, Przegląd Spaw. - Weld. Technol. Rev., 88(1), (2016), 41–45.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f119689-a4b4-4f7e-a84f-d0fac6081933
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.