PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using microservices architecture as analytical system for electrical impedance tomography imaging

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie architektury mikrousług w analitycznym systemie rekonstrukcji obrazów elektrycznej tomografii impedancyjnej
Języki publikacji
EN
Abstrakty
EN
An image reconstruction with use of EIT method has been found useful in many areas of medical, industrial and environmental applications. Papers show that computational systems used for image reconstructions are utilizing parallel and distributed computations and multi-tier architecture, as well as monolithic architecture. The aim of our research is to define an analytical system architecture that will be able to combine a variety of image reconstruction algorithms with their representations in different programming languages. Based on examples described in different proceedings and research papers, a microservices architecture seems to be an interesting alternative to the monolithic one.
PL
Zaprezentowano postępy prac związanych z budową system analitycznego służącego do rekonstrukcji obrazów obiektów badanych za pomocą elektrycznej tomografii impedancyjnej. Celem system jest elastyczność pozwalająca na integrację wewnątrz jednego system modułów analitycznych bazujących na różnych algorytmach rekonstrukcji obrazu identyfikowanego obiektu. Kolejnym ważnym wymaganiem jest możliwość oprogramowania modułów analitycznych za pomocą najczęściej wykorzystywanych w tej dziedzinie językach programowania. System zapewnia komunikację z urządzeniem za pośrednictwem łączy internetowych, co pozwala na zdalne sterowanie i pobieranie wyników pomiarów. Dodatkowym założeniem stawianym aplikacji jest możliwość korzystania z dowolnego źródła danych (urządzenie typu tomograf, baza danych, systemy plików) poddawanych analizie, a wyniki rekonstrukcji mają być dostępne dla każdego urządzenia komputerowego. Zaprezentowano dwa rodzaje architektury aplikacji, monolityczną i opartą o mikro usługi.
Rocznik
Strony
52--55
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
  • Lublin University of Technology, Faculty of Management, Department of Organization of Enterprise
autor
  • Research and Development Center, Netrix S.A., Lublin
  • University of Economics and Innovation in Lublin
  • Lublin University of Technology, Faculty of Management, Department of Organization of Enterprise
Bibliografia
  • [1] Adler A., Arnold J.H., Bayford R., Borsic A., Brown B., Dixon P., Grychtol B.: GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiological measurement 30(6), 2009, 35–55, [DOI: 10.1088/0967-3334/30/6/S03].
  • [2] Borcea L.: Electrical impedance tomography. Inverse Problems 18, 2002, 99–136.
  • [3] Amaral M., Polo J., Carrera D., Mohomed I., Unuvar M., Steinder M.: Performance evaluation of microservices architectures using containers. Network Computing and Applications (NCA), IEEE 14th International Symposium, 2015.
  • [4] D'Agostino D., Roverelli L., Zereik G., De Luca A., Salvaterra R., Belfiore A., Tiengo A.: A microservice-based portal for X-ray transient and variable sources. PeerJ Preprints, No. e2519v2, 2017.
  • [5] Dragoni N., Giallorenzo S., Lafuente A. L., Mazzara M., Montesi F., Mustafin R., Safina L.: Microservices: yesterday, today, and tomorrow. arXiv preprint arXiv:1606.04036, 2016.
  • [6] Dragoni N., Lanese I., Larsen S. T., Mazzara M., Mustafin R., Safina L.: Microservices: How to make your application scale. arXiv preprint arXiv:1702.07149, 2017
  • [7] Duda K., Adamkiewicz P., Rymarczyk T.: Nondestructive Method to Examine Brick Wall Dampness. International Interdisciplinary Phd Workshop 2016, 68–71.
  • [8] Filipowicz S.F., Rymarczyk T.: Measurement Methods and Image Reconstruction in Electrical Impedance Tomography. Przeglad Elektrotechniczny 88(6), 2012, 247–250.
  • [9] Filipowicz S.F., Rymarczyk T.: The Shape Reconstruction of Unknown Objects for Inverse Problems. Przeglad Elektrotechniczny 88(3A), 2012, 55–57.
  • [10] Fowler M.: Microservices. ThoughtWorks, http://martinfowler.com/articles/microservices.html, 2014 [06.09.2017].
  • [11] Holder D.S.: Electrical Impedance Tomography: Methods, History and Applications. Series in Medical Physics and Biomedical Engineering, London 2005.
  • [12] Johanson A., Flögel S., Dullo C., Hasselbring W.: OceanTEA: Exploring Ocean-Derived Climate Data Using Microservices. 6th International Workshop on Climate Informatics, National Center for Atmospheric Research in Bloulder, 2016.
  • [13] Kapusta P., Majchrowicz M., Sankowski D., Jackowska-Strumiłło L., Banasiak R.: Distributed multi-node, multi-GPU, heterogeneous system for 3D image reconstruction in Electrical Capacitance Tomography–network performance and application analysis. Przegląd Elektrotechniczny 89(2B), 2013, 339—342.
  • [14] Kim M., Mohindra A., Muthusamy V., Ranchal R., Salapura V., Slominski A., Khalaf R.: Building scalable, secure, multi-tenant cloud services on IBM Bluemix. IBM Journal of Research and Development 60(2-3), 2016.
  • [15] Richardson C.: Pattern: Microservices Architecture, Microservices.io. http://microservices.io/patterns/microservices.html [06.09.2017].
  • [16] Rybak G., Chaniecki Z., Grudzień K., Romanowski A., Sankowski D.: Non–invasive methods of industrial process control. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 3, 2014, 41–45 [DOI: 10.5604/20830157.1121349].
  • [17] Rymarczyk T.: Using electrical impedance tomography to monitoring flood banks. International Journal of Applied Electromagnetics and Mechanics 45, 2014, 489–494.
  • [18] Rymarczyk T.: New Methods to Determine Moisture Areas by Electrical Impedance Tomography. International Journal of Applied Electromagnetics and Mechanics 37(1–2), 2016, 79–87.
  • [19] Rymarczyk T., Tchórzewski P., Sikora J.: Monitoring of Flood Embankment System by Nondestructive Method with Infinite Boundary Element. Studies in Applied Electromagnetics and Mechanics 40, 2015, 176–183.
  • [20] Rymarczyk T., Tchórzewski P.: Topological methods to determine damages of flood embankments. Przegląd Elektrotechniczny 92(12), 2016, 153–156.
  • [21] Sankowski D., Sikora J.: Electrical capacitance tomography: Theoretical basis and applications. IEL, Warsaw 2010.
  • [22] Sousa G., Rudametkin W., Duchien L.: Automated Setup of Multi-Cloud Environments for Microservices-Based Applications. 9th IEEE International Conference on Cloud Computing, San Francisco, USA, 2016.
  • [23] Sikora J., Wójtowicz S.: Industrial and Biological Tomography: Theoretical Basis and Applications. IEL, Warsaw 2010.
  • [24] Smolik W.: Forward Problem Solver for Image Reconstruction by Nonlinear Optimization in Electrical Capacitance Tomography. Flow Measurement and Instrumentation 21, 2010, 70–77.
  • [25] Tai C., Chung E., Chan T.: Electrical impedance tomography using level set representation and total variational regularization. Journal of Computational Physics 205(1), 2005, 357–372.
  • [26] Wajman R., Fiderek P., Fidos H., Jaworski T., Nowakowski J., Sankowski D., Banasiak R.: Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination. Meas. Sci. Technol. 24(6), 2013, 065302.
  • [27] Wang M.: Industrial Tomography: Systems and Applications. Elsevier, 2015.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f0ef0a2-9882-4f6f-82f8-db9a0aa49ea9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.