PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mitigation scratch on fused silica optics using CO2 laser

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The scratch on a fused silica surface was treated as a chain of connected damage sites and mitigated one after another using CO2 laser irradiation. The optical microscopy image shows that a scratch with the width of about 30 μm and length of several millimeters can be completely mitigated without the formation of debris and bubbles. The mitigated scratch can survive under raster scan laser irradiation with the fluency increased up to 11.0J/cm2 at 3ns and 351nm. On the contrary, the substrate without CO2 laser mitigation is seriously damaged under this irradiation. The light modulation induced by mitigation is much smaller when the scratch is mitigated before being damaged. The light modulation is about 2 when the distance to the mitigated sample is larger than 20cm. The birefringence induced by residual stress in the mitigated scratch is measured. The retardance of the mitigated scratch before being damaged is not visible. Therefore, residual stress in this mitigated scratch before being damaged should be not a critical potential risk in laser damage.
Słowa kluczowe
Czasopismo
Rocznik
Strony
387--397
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu, 610054, China
autor
  • School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu, 610054, China
autor
  • School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu, 610054, China
autor
  • Joint Laboratory for Extremeconditions Matter Properties, Southwest University of Science and Technology, Mianyang, 62101, China
autor
  • School of Physical Electronics, University of Electronic Science and Technology of China,Chengdu, 610054, China
autor
  • Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
autor
  • Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
autor
  • Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
autor
  • Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, China
Bibliografia
  • [1] CAMPBELL J.H., HAWLEY-FEDDER R.A., STOLZ C.J., MENAPACE J.A., BORDEN M.R., WHITMAN P.K., YU J., RUNKEL M.J., RILEY M.O., FEIT M.D., HACKEL R.P., NIF optical materials and fabrication technologies: an overview, Proceedings of SPIE 5341, 2004, p. 84.
  • [2]PRASAD R.R., BRUERE J.R., PETERSON J., HALPIN J.M., BORDEN M., HACKEL R.P., Enhanced performance of large 3ω optics using UV and IR lasers, Proceedings of SPIE 5273, 2003, p. 288.
  • [3]BERCEGOL H., BOUCHUT P.R., LAMAIGNERE L., GARREC B.L., RAZE G., The impact of laser damage on the lifetime of optical components in fusion lasers, Proceedings of SPIE 5273, 2003, p. 312.
  • [4]MENAPACE J.A., DAVIS P.J., STEELE W.A., HACHKOWSKI M.R., NELSON A., KAI XIN, MRF applications: on the road to making large-aperture ultraviolet laser resistant continuous phase plates for high-power lasers, Proceedings of SPIE 6403, 2007, article 64030N.
  • [5]MENAPACE J.A., Developing magnetorheological finishing (MRF) technology for the manufacture of large-aperture optics in megajoule class laser systems, Proceedings of SPIE 7842, 2010, article 78421W.
  • [6]BERTUSSI B., CORMONT P., PALMIER S., LEGROS P., RULLIER J.-L., Initiation of laser-induced damage sites in fused silica optical components, Optics Express 17(14), 2009, pp. 11469–11479.
  • [7]LAMAIGNÈRE L., BALAS M., COURCHINOUX R., DONVAL T., PONCETTA J.C., REYNÉ S., BERTUSSI B., BERCEGOL H., Parametric study of laser-induced surface damage density measurements: toward reproducibility, Journal of Applied Physics 107(2), 2010, article 023105.
  • [8]NORTON M.A., HRUBESH L.W., ZHOULING WU, DONOHUE E.E., FEIT M.D., KOZLOWSKI M.R., MILAM D., NEEB K.P., MOLANDER W.A., RUBENCHIK A.M., SELL W.D., WEGNER P.J., Growth of laser-initiated damage in fused silica at 351 nm, Proceedings of SPIE 4347, 2000, p. 468.
  • [9]CHAMBONNEAU M., CHANAL M., REYNÉ S., DUCHATEAU G., NATOLI J.-Y., LAMAIGNÈRE L., Investigations on laser damage growth in fused silica with simultaneous wavelength irradiation, Applied Optics 54(6), 2015, pp. 1463–1470.
  • [10]DEMOS S.G., RAMAN R.N., NEGRES R.A., Time-resolved imaging of processes associated with exit-surface damage growth in fused silica following exposure to nanosecond laser pulses, Optics Express 21(4), 2013, pp. 4875–4888.
  • [11]HUNT J.S., UCRL-ID-138120-99, 1999.
  • [12]BURNHAM A.K., HACKEL L.A., WEGNER P.J., PARHAM T.G., HRUBESH L.W., PENETRANTE B.M., WHITMAN P.K., DEMOS S.G., MENAPACE J.A., RUNKEL M.J., FLUSS M.J., FEIT M.D., KEY M.H., BIESIADA T.A., Improving 351-nm damage performance of large-aperture fused silica and DKDP optics, Proceedings of SPIE 4679, 2001, p. 173.
  • [13] ZHANG CHUN-LAI, WANG ZHI-GUO, LIU CHUN-MING, XIANG XIA, YUAN XIAO-DONG, HE SHAO-BO, LI LI, ZU XIAO-TAO, Near-field modulation of lateral cracks, Acta Physica Sinica 61(8), 2012, article 084207, (in Chinese).
  • [14]CORMONT P., COMBIS P., GALLAIS L., HECQUET C., LAMAIGNÈRE L., RULLIER J.L., Removal of scratches on fused silica optics by using a CO2 laser, Optics Express 21(23), 2013, pp. 28272–28289.
  • [15]HRUBESH L.W., NORTON M.A., MOLANDER W.A., DONOHUE E.E., MARICLE S.M., PENETRANTE B.M., BRUSASCO R.M., GRUNDLER W., BUTLER J.A., CARR J.W., HILL R.M., SUMMERS L.J., FEIT M.D., RUBENCHIK A.M., KEY M.H., WEGNER P.J., BURNHAM A.K., HACKEL L.A., KOZLOWSKI M.R., Methods for mitigating surface damage growth in NIF final optics, Proceedings of SPIE 4679, 2002, p. 23.
  • [16]YANG S.T., MATTHEWS M.J., ELHADJ S., COOKE D., GUSS G.M., DRAGGOO V.G., WEGNER P.J., Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica, Applied Optics 49(14), 2010, pp. 2606–2616.
  • [17]GUSS G., BASS I., DRAGGOO V., HACKEL R., PAYNE S., LANCASTER M., MAK P., Mitigation of growth of laser initiated surface damage in fused silica using a 4.6-micron wavelength laser, Proceedings of SPIE 6403, 2007, article 64030M.
  • [18]MENDEZ E., NOWAK K.M., BAKER H.J., VILLARREAL F.J., HALL D.R., Localized CO2 laser damage repair of fused silica optics, Applied Optics 45(21), 2006, pp. 5358–5367.
  • [19]ADAMS J.J., BOLOURCHI M., BUDE J.D., GUSS G.M., MATTHEWS M.J., NOSTRAND M.C., Results of applying a non-evaporative mitigation technique to laser-initiated surface damage on fused-silica, Proceedings of SPIE 7842, 2010, article 784223.
  • [20]BASS I.L., GUSS G.M., HACKEL R.P., Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser, Proceedings of SPIE 5991, 2006, article 59910C.
  • [21]DURING A., BOUCHUT P., COUTARD J.G., LEYMARIE C., BERCEGOL H., Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam, Proceedings of SPIE 6403, 2007, article 640323.
  • [22]BASS I.L., GUSS G.M., NOSTRAND M.J., WEGNER P.J., An improved method of mitigating laser-induced surface damage growth in fused silica using a rastered pulsed CO2 laser, Proceedings of SPIE 7842, 2010, article 784220.
  • [23]CORMONT P., CORBINEAU T., GALLAIS L., HECQUET C., LAMAIGNÈRE L., RULLIER J.L., Characterization of scratches on fused silica optics and a way to remove them, Proceedings of SPIE 8530, 2012, article 853026.
  • [24]CORMONT P., BOURGEADE A., CAVARO S., DOUALLE T., GABORIT G., GALLAIS L., RULLIER J.-L., TAROUX D., Process for repairing large scratches on fused silica optics, Proceedings of SPIE 9633, 2015, article 96330A.
  • [25]CORMONT P., BOURGEADE A., CAVARO S., DONVAL T., DOUALLE T., GABORIT G., GALLAIS L., LAMAIGNÈRE L., RULLIER J.-L., Relevance of carbon dioxide laser to remove scratches on large fused silica polished optics, Advanced Engineering Materials 17(3), 2015, pp. 253–259.
  • [26]RAMAN R.N., MATTHEWS M.J., ADAMS J.J., DEMOS S.G., Monitoring annealing via CO2 laser heating of defect populations on fused silica surfaces using photoluminescence microscopy, Optics Express 18(14), 2010, pp. 15207–15215.
  • [27] RUNKEL M., HAWLEY-FEDDER R., WIDMAYER C., WILLIAMS W., WEINZPFEL C., ROBERTS D., UCRL-ConF-216523, 2005.
  • [28]LIU CHUN-MING, JIANG YONG, LUO CHENG-SI, SHI XIAO-YAN, REN WEI, XIANG XIA, WANG HAI-JUN, HE SHAO-BO, YUAN XIAO-DONG, LV HAI-BING, ZHENG WAN-GUO, ZU XIAO-TAO, The structure evolution of fused silica induced by CO2 laser irradiation, Chinese Physics Letters 29(4), 2012, article 044211.
  • [29]GALLAIS L., CORMONT P., RULLIER J.L., Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation, Optics Express 17(26), 2009, pp. 23488–23501.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f0c733b-ff91-4197-b148-213d4196ff8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.