PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Empirical Tests of Stress in Gyroplane Rotor During Flight

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of experimental investigations of total tensile stresses in a gyroplane’s rotor during flight. The research aimed to determine which flight maneuvers induce the greatest stress in the rotor blade and the hub bar. The object of research was an ultralight gyroplane Tercel by Aviation Artur Trendak equipped with a rotor by the same manufacturer. Measurements were taken a) at the root of the rotor blade in the longitudinal direction, at the rotor blade’s lower surface in the point where the blade is attached to the hub bar, and b) in the hub bar, on its lower surface also in the longitudinal direction. To measure the stress, the author constructed an original measuring system based on the strain gauge bridge circuit mounted on the rotor head. The tests were carried out in a wide range of maneuvers within the gyroplane’s flight envelope. The highest value of tensile stress was found to occur while rapidly reducing the horizontal velocity in steep descent.
Słowa kluczowe
Twórcy
  • Katedra Termodynamiki, Mechaniki Płynów i Napędów Lotniczych, Wydział Mechaniczny, Politechnika Lubelska, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. US. Departmente of Transportation Federal Aviation Administration, Rotorcraft Flying Handbook. 2000.
  • 2. U.S. Department of Transportation Federal Aviation Administration, Helicopter Flying Handbook, vol. 1. 2012.
  • 3. U.S. Department of Transportation Federal Aviation Administration, Aviation Maintenance Technician Handbook - Powerplant vol. 2, vol. 2. 2012.
  • 4. Mil’ M.L. et al., Helicopters - calculation and design Vol. 11. Vibrations and Dynamic Stability (NASA TT F-519), 1997.
  • 5. S.A. Division, U.A. Corporation, and N. Aeronautics, Contractor report NASA CR-2225 analysis of helicopter maneuver-loads and rotor-loads flighttest data, by Edward A. Beno Sikorsky Aircraft Division United Aircraft Corporation, 1973.
  • 6. Yeo H., Design and aeromechanics investigation of compound helicopters, Aerosp. Sci. Technol., vol. 88, pp. 158–173, 2019.
  • 7. Gao H., A. He, Z. Gao, Y. Na, And Y. Deng, Flight dynamics characteristics of canard rotor/wing aircraft in helicopter flight mode, Chinese J. Aeronaut., vol. 32, 2019, 1577–1587
  • 8. University of Twente, Smart helicopter thanks to active rotor blades, 2013.
  • 9. Islam M.T., M. S. Rabbi, and M. S. Uddin, Noise reduction of helicopter rotor blades by using spoiler. In: AIP Conference Proceedings, 2019, vol. 2121.
  • 10. Shi Y., T. Li, X. He, L. Dong, and G. Xu, Helicopter rotor thickness noise control using unsteady force excitation, Appl. Sci., vol. 9, no. 7, 2019.
  • 11. Serafini J., G. Bernardini, R. Porcelli, and P. Masarati, In-flight health monitoring of helicopter blades via differential analysis, Aerosp. Sci. Technol., vol. 88, 2019, 436–443.
  • 12. European Aviation Safety Agency, and Acceptable Means of Compliance for Light Sport Aeroplanes CS-VLR, ED Decision 2018/015/R, no. December, p. 76, 2018.
  • 13. European Aviation Safety Agency, Certification specifications and acceptable means of compliance for Small Rotorcraft CS-27, ED Decision 2019/013/R, no. July, p. 225, 2019.
  • 14. Degu Y.M. and D. Alebel, Design of Composite Gyrocopter Main Rotor Blade Involving Rib and Spar Elements, vol. 9, no. 2, 2019, 97–106.
  • 15. Reddy M., Aerodynamic Load Estimation of Helicopter Rotor in Hovering Flight, J. Aeronaut. Aerosp. Eng., vol. 05, no. 01, 2015, 1–5.
  • 16. Stalewski W. and W. Zalewski, Performance improvement of helicopter rotors through blade redesigning, Aircr. Eng. Aerosp. Technol., vol. 91, no. 5, 2019, 747–755.
  • 17. Pastrikakis V.A., R. Steijl, and G. N. Barakos, Effect of Active Gurney Flaps on Overall Helicopter Flight Envelope, Aeronaut. J., 2016.
  • 18. Warwick G., Leonardo to Flight Test Active Rotor Blade, The Weekly of Business Aviation, 2016.
  • 19. Han D., V. Pastrikakis, and G. N. Barakos, Helicopter flight performance improvement by dynamic blade twist, Aerosp. Sci. Technol., vol. 58, 2016, 445–452.
  • 20. McCormick B.W., A numerical analysis of autogyro performance, in 2002 Biennial International Powered Lift Conference and Exhibit, 2002.
  • 21. Gausz Z. and T. Gausz, Aeromechaincal model for gyroplane rotors, in Proceedings of the Mini Conference on Vehicle System Dynamics, Identification and Anomalies, 2012, Novem, 29–38.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f0c319c-413a-4e20-8a20-096b90c2dc7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.