Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The scan-line corrector (SLC) of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor failed in May 2003, and this abnormal functioning of SLC resulted in about 22% of the pixels per scene without being scanned. By filling the un-scanned gap by a good technique will help in more use of ETM+ data for many scientific applications. While there have been a number of approaches developed to fill in the data gaps in ETM+ imagery, each method has shortcomings, especially they require SLC-on (images acquired before SLC-off anomaly) imagery for the same location to fill the gaps in SLC-off (images acquired after SLC anomaly) image. To overcome such shortcomings this study proposes an alternative interpolation method based on the partial derivative. This case study shows that this technique is very much useful to interpolate the missing pixel values in the SLC-off ETM+ data.
Wydawca
Czasopismo
Rocznik
Tom
Strony
93--100
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Lab for Spatial Informatics, International Institute of Information Technology,Gachibowli, Hyderabad, 500032
Bibliografia
- 1. M.J.Pringle, M. Schmidt, and J.S.Muir, Geo-statistical interpolation of SLC-off Landsat ETM plus images, ISPRS Journal of Photogrammetry and Remote Sensing, 64,654−664, 2009.
- 2. Feng Chen, Xiaofeng Zhao, and Hong Ye, Making Use of the Landsat 7 SLC-off ETM+ Image Through Different Recovering Approaches, Data Acquisition Applications, Prof. Zdravko Karakehayov (Ed.), ISBN: 978-953-51-0713-2, InTech, DOI: 10.5772/48535, 2012. Available from: http://www.intechopen.com/books/data-acquisition-applications/making-use-ofthe-landsat-7-slc-off-etm-image-through-different-recovering-approaches
- 3. C.Zhang, W. Li, and D.Travis, Gaps-fill of SLC-off Landsat ETM plus satellite image using a geostatistical approach. International Journal of Remote Sensing, 28, 5103−5122, 2007.
- 4. T. Arvidson, S. Goward, J. Gasch, and D.Williams, Landsat-7 long-term acquisition plan: Development and validation. Photogrammetric Engineering and Remote Sensing, 72, 1137−1146, 2006.
- 5. M. Mohammdy, H. R. Moradi, H. Zeinivand, A. J. A. M. Temme, H. R. Pourghasemi, and H. Alizadeh ,Validating gap-filling of Landsat ETM+ satellite images in the Golestan Province, Iran Arab J Geosci , 2013, DOI 10.1007/s12517-013-0967- 5
- 6. USGS (United States Geological Survey), Preliminary Assessment of Landsat 7 ETM+ Data Following Scan Line Corrector Malfunction, 2003. http://landsat.usgs.gov/ documents/SLC_off_Scientific_Usability.pdf (Accessed on 3rd march, 2013)
- 7. USGS (United States Geological Survey), Phase 2 gap-fill algorithm: SLC-off gap-filled products gap-fill algorithm methodology, 2004. landsat.usgs.gov/documents/L7SLCGap FilledMethod.pdf (Available online at (accessed 28 November 2010).
- 8. P. Scaramuzza, E. Micijevic, and G. Chander, SLC gap-filled products: Phase one methodology, 2004. Available online at: http://landsat.usgs.gov/data_products/slc_off_data_products/documents/SLC_Gap _Fill_Methodology.pdf (accessed on 5th June, 2013)
- 9. D.P. Roy, J. Ju, P. Lewis, C.Schaaf, F. Gao, M. Hansen, M., et al. Multi-temporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sensing of Environment, 112, 3112−3130, 2008.
- 10. M. M. Reza, S.N. Ali, Using IRS products to recover 7ETMC defective images. American Journal of Applied Sciences, 5 (6), 618 625, 2008
- 11. A.D.Boloorani, S. Erasmi, and M. Kappas, Multi-Source Remotely Sensed Data. Combination: Projection Transformation Gap-Fill Procedure. Sensors, Vol. 8, pp.4429-4440, 2008
- 12. S.K. Maxwell, G. L. Schmidt, and J.C. Storey, A multi-scale segmentation approach to filling gaps in Landsat ETM+ SLC-off images. International Journal of Remote Sensing, 28, 5339−5356, 2007
- 13. F. Bédard, G. Reichert, R. Dobbins, and I. Trépanier, Evaluation of segment-based gap-filled Landsat ETM+ SLC-off satellite data for land cover classification in southern Saskatchewan, Canada. International Journal of Remote Sensing, 29, 2041−2054, 2008.
- 14. M.Ganio Lisa, E.T. Christian, Orgersen, and E. Robert, A. Gresswell, Geostatistical approach for describing spatial pattern in stream networks, Front Ecol Environ, 3(3): 138–144,2005.
- 15. Kyung-Su Kim, Min-Jeong Lee , Hae-Yeoun Lee, and Heung-Kyu Lee, Reversibledatahidingexploitingspatialcorrelationbetweensub-sampledimages.Pattern Recognition 42 (2009) 3083—3096, 2009.
- 16. J.Chen, X.L. Zhu, J.E. Vogelmann, J. E. et al. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. Remote Sensing of Environment, Vol.115, No.4, pp.1053-1064, 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f0b3d58-16fc-4a93-873c-5e2e019a2860