PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heavy Metals Effects on Agricultural Soil Enzyme Activities of Fez, Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Enzyme activities in soils are influenced by soil characteristics and pollutants and could be indicator of soil quality. This study was undertaken to determine the relationship between physicochemical characteristics, heavy metals contents and enzyme activities (EA) in agricultural soils in the Saiss plain (Morocco). The analysis of six agricultural soil samples (sites 1–6), collected from urban and periurban agricultural soils of Fez region, showed that soils are generally alkaline with high CaCO3 that rich 46%, EC (525–703 μS/cm), rich in organic matter (3.14–5.80%). The Cr, Cu, Ni, Pb and Zn concentrations in the studied area are generally greater than the Upper Continental Crust, with a deceasing order: Zn> Cr> Pb> Cu> Ni. Geo-accumulation index showed that soils are unpolluted to moderately polluted except site 5 and site 6 that are moderately to strongly polluted by respectively Cu, Pb, Zn and Pb. Potential ecological rіsk factors were below 40, which means low potential ecological rіsk except site 5 that has moderate potential ecological risk by Cu and Pb. Soil potential ecological risk indices were found <150 indicating low ecological risk. According to this index, Cu caused more serious pollution than the other elements. The enzyme actіvities of the sіx soil samples showed almost the similar ranges of values. These EA showed the highest values in site 5.The sensіtivity of soil enzyme to heavy metals were observed UREA>PHOS>GALA. Pearson’s correlation showed significant posіtive correlatіon between studied soil EA and between these EA and heavy metals (Cu, Pb and Zn), and significant negative correlatіon between EA and heavy metals (Cr and Ni). The results of this study enrich and provide data base of the impact of heavy metals on soil enzyme actіvities in agrіcultural soils in the Saiss plain.
Rocznik
Strony
144--154
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Functional Ecology and Environmental Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Route Immouzer, 2202 Fez, Morocco
  • Processes, Materials and Environment Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Route Immouzer, 2202 Fez, Morocco
autor
  • Functional Ecology and Environmental Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Route Immouzer, 2202 Fez, Morocco
  • Microbial Biotechnology and Bioactive Molecules Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Route Immouzer, 2202 Fez, Morocco
  • Microbial Biotechnology and Bioactive Molecules Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Route Immouzer, 2202 Fez, Morocco
  • Processes, Materials and Environment Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Route Immouzer, 2202 Fez, Morocco
Bibliografia
  • 1. Angelovicova L., Lodenius M., Tulisalo E., Fazekasova D. 2014. Effect of heavy metals on soil enzyme activity at different field conditions in Middle Spis mining area (Slovakia). Bull Environ Contam Toxicol., 93(6), 670–675.
  • 2. Aponte H., Meli P., Butler B., Paolini J., Matus F., Merino C., Cornejo P., Kuzyakov Y. 2020. Meta-analysis of heavy metal effects on soil enzyme activities. Sci Total Environ., 737, 139744.
  • 3. Alkorta I., Aizpurua A., Riga P., Albizu I., Amézaga I., Garbisu C. 2003. Soil enzyme activities as biological indicators of soil health. Rev Environ Health., 18(1), 65–73.
  • 4. Billaux P., Bryssine G. 1967. Les sols du Maroc. In: Congrès de pédologie méditerranéenne: Excursion au Maroc. Cahiers de la Recherche Agronomique, 1, 59–101.
  • 5. Bremner J.M., Mulvaney R.L. 1978. Urease activity in soils. In: Soil enzymes. Burns RG (eds) Academic Press, London, 149–196.
  • 6. Cang L., Zhou D.M., Wang Q.Y., Wu D.Y. 2009. Effect of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities. J Hazard Mater, 172, 1602–1607.
  • 7. Ciarkowska K., Gargiulo L., Mele G. 2016. Natural restoration of soils on mine heaps with similar technogenic parent material: a case study of long-term soil evolution in Silesian-Krakow upland Poland. Geoderma, 261, 141e150.
  • 8. Dick W.A., Dick R.P. 2011. Development of a Soil Enzyme Reaction Assay. Methods of Soil Enzymology.
  • 9. Eivazi F., Tabatabai M.A. 1988. Glucosidases and galactosidases in soils. Soil Biology and Biochemistry, 20, 601–606.
  • 10. Gianfreda L., Ruggiero P. 2006. Enzyme Activities in Soil. In: Nannipieri, P. and Smalla, K., Eds., Nucleic Acids and Proteins in Soil, Springer-Verlag, Berlin Heidelberg, 257–310.
  • 11. Hagmann D.F., Goodey N.M., Mathieu C., Evans J., Aronson M.F.J., Gallagher F., Krumins J.A. 2015. Effect of metal contamination on microbial enzymatic activity in soil. Soil Biol. Biochem., 91, 291e297.
  • 12. Hakanson L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research., 14, 975–10001.
  • 13. Jin Y., Liang X., He M., Liu Y., Tian G., Shi J. 2016. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: a microcosm incubation study. Chemosphere, 142, 128–135.
  • 14. Kabata-Pendias A. 2011. Trace Elements in Soils and Plants. Fourth Edition.
  • 15. Karaca A., Cetin S.C., Turgay O.C., Kizilkaya R. 2010. Soil Enzymes as Indication of Soil Quality. In: Shukla, G., Varma, A. (eds) Soil Enzymology. Soil Biology, 22. Springer, Berlin, Heidelberg.
  • 16. Kouchou A., Rais N., Thoisy J.C., Duplay J., Ghazi M., Elsass F., Ijjaali M., El Ghachtouli N. 2017. Behavior of Enzyme Activities Exposed to Contamination by Heavy Metals and Dissolved Organic Carbon in Calcareous Agricultural Soils. Soil and Sediment Contamination, 26(3), 259–276.
  • 17. Liu K., Li C., Tang S., Shang G., Yu F., Li Y. 2020. Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi, China. Chemosphere, 251, 126415.
  • 18. Nelson D.W., Sommers L.E. 1996. Total carbon, organic carbon, and organic matter. In Sparks, D.L., et al., Eds., Methods of Soil Analysis. Part 3, SSSA Book Series, Madison, 961–1010.
  • 19. Marsina K., Bodis D., Havrila M., Janak M., Kacer S., Kohut M., Lexa J., Rapant S., Vozarova A. 1997. Geochemical atlas of Slovak republic, part: rocks. State Geological Institute of Dionyz Stur, Bratislava
  • 20. Mkhinini M., Boughattas I., Alphonse V., Livet A., Gıusti-Mıller S., Banni M., Bousserrhine N. 2020. Heavy metal accumulation and changes in soil enzymes activities and bacterial functional diversity under long-term treated wastewater irrigation in East Central region of Tunisia (Monastir governorate). Agricultural Water Management, 235, 106150.
  • 21. Muller V.G. 1986. Schadstoffe in Sedimenten - Sedimente als Schadstoffe. Mitt. österr. geol. Ges., 107–126.
  • 22. Oliveira A., Pampulha M.E. 2006. Effects of longterm heavy metal contamination on soil microbial characteristics. J Biosci Bioeng, 102, 157–161.
  • 23. Sinsabaugh R.L., Reynolds H., Long T.M. 2000. Rapid assay for amidohydrolase (urease) activity in environmental samples. Soil Biol Biochem, 32, 2095–2097.
  • 24. Singh P., Purakayastha T.J., Mitra S., Bhowmik A., Tsang D.C.W. 2020. River water irrigation with heavy metal load influences soil biological activities and risk factors. J Environ Manage., 270, 110517.
  • 25. Shukla G., Varma A. 2011. Soil enzymology. Springer, Berlin.
  • 26. Stankovic S., Stankovic R.A. 2003. Bioindicators of toxic metals. In: Lichtfouse E (ed) Environmental chemistry for a sustainable world. Springer, Berlin, 151–228.
  • 27. Tabatabai M.A., Bremner J.M. 1969. The use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1, 301–307.
  • 28. Tang J., Zhang L., Zhang J., Ren L., Zhou Y., Zheng Y., Luo L., Yang Y., Huang H., Chen A. 2020. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci Total Environ., 701, 134751.
  • 29. Tejada M., Moreno J.L., Hernandez M.T., Garcia C. 2008. Soil amendments with organic wastes reduce the toxicity of nickel to soil enzyme activities. Eur J Soil Biol, 44, 129–140.
  • 30. Tomlinson D.L., Wilson J.G., Harris C.R., Jeffrey D.W. 1980. Problems in the assessment of heavy metals in estuaries and the formation of pollution index. Helgoländer Meeresuntersuchungen, 33, 566–575.
  • 31. Wedepohl H. 1995. The composition of the continental crust. Geochimica et Cosmochimica., 59, 1217–1232.
  • 32. Xian Y., Wang M., Chen W. 2015. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere.
  • 33. Yang J., Yang F., Yang Y., Xing G., Deng C., Shen Y., Luo L., Li B., Yuan H. 2016. A proposal of “core enzyme” bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis. Environ. Pollut., 213, 760e769.
  • 34. Zornoza R., Landi L., Nannipieri P., Renella G. 2009. A protocol for the assay of arylesterase activity in soil. Soil Biol Biocem, 41, 659e662.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5f099a53-f9e2-43cb-b410-c8a1f16aafb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.