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Abstract. In this paper, we study the second Cushing–Henson conjecture for the
Beverton–Holt difference equation with periodic inherent growth rate and periodic car-
rying capacity in the quantum calculus setting. We give a short summary of recent results
regarding the Beverton–Holt difference and q-difference equation and introduce the theory
of quantum calculus briefly. Next, we analyze the second Cushing–Henson conjecture. We
extend recent studies in [The Beverton-Holt q-difference equation with periodic growth rate,
Difference Equations, Discrete Dynamical Systems, and Applications, Springer-Verlag, Berlin,
Heidelberg, New York, 2015, pp. 3–14] and state a modified formulation of the second
Cushing–Henson conjecture for the Beverton–Holt q-difference equation as a generalization
of existing formulations.

Keywords: Beverton–Holt equation, Cushing–Henson conjectures, q-difference equation,
periodic solution.

Mathematics Subject Classification: 39A12, 39A13, 92D25.

1. THE BEVERTON–HOLT DIFFERENCE EQUATION

Beverton and Holt introduced their population model in the context of fisheries
in 1957 [3]. The model is applied in various fields such as biology, economy and social
science, see [2,15,17]. To achieve a more realistic presentation of population dynamics,
additional assumptions have been added to the traditional model such as contest
competition [11], within-year resource limited competition [14], and including survivor
rates [13].

The classical Beverton–Holt difference equation is given by

xn+1 = νKxn
K + (ν − 1)xn

, n ∈ N0, (1.1)
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where x0 > 0, ν > 1 is the inherent growth rate, and K > 0 is representing the carrying
capacity. Studies in [8] verify the first and the second Cushing–Henson conjecture for
the classical Beverton–Holt equation. The first conjecture guarantees the existence
of a unique periodic solution that is globally attractive. The second Cushing–Henson
conjecture states that the average of the periodic solution is strictly less than the
average of the periodic carrying capacity over one period. Biologically this means that
the introduction of a periodic environment is deleterious for the population.

In [9], the periodically forced Beverton–Holt difference equation with periodic
coefficients was introduced as

xn+1 = νnKnxn
Kn + (νn − 1)xn

, n ∈ N0, (1.2)

where x0 > 0, νn > 1 is the inherent growth rate, and Kn represents the positive
periodic carrying capacity for all n ∈ N0. The following conjectures were confirmed.

Theorem 1.1 ([9, Conjecture 2.1]). The difference equation (1.2) with ω-periodic K
and ν has a unique ω-periodic solution that globally attracts all its solutions.

Theorem 1.1 is a generalization of the first Cushing–Henson conjecture formulated
for the classical Beverton–Holt equation with constant inherent growth rate. Cushing
and Henson also predicted for the classical Beverton–Holt equation with constant
growth rate that the introduction of a periodic environment is deleterious for the
population [12]. However, in the case of a periodic growth rate, the authors provided
a counterexample in [9] and presented the following modifications.

Theorem 1.2 ([9, Conjecture 3.2]). The weighted average of the ω-periodic solution
x̄ of (1.2) is strictly less than the weighted average of the nonconstant ω-periodic
carrying capacity K over one ω-period, i.e.,

1
a

ω−1∑

n=0
αnx̄n <

1
a

ω−1∑

n=0
αnKn, where a =

ω−1∑

n=0
αn, (1.3)

with α = ν−1
ν . If the carrying capacity K is constant, then we have equality in (1.3).

Theorem 1.3 ([9, Theorem 3.3]). The average of the ω-periodic solution x̄ of (1.2)
is strictly less than the average of the “surrounded” nonconstant ω-periodic carrying
capacity K, i.e.,

1
ω

ω−1∑

n=0
x̄n <

1
ω

ω−1∑

n=0
Kn(1 + δn) (1.4)

with

δn = λ+ 1
λ

ω−1∑

i=1
(αn − αn+i)

n+i−1∏

k=n+1
(1− αk).

If the carrying capacity K is constant, then we have equality in (1.4).
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Theorems 1.2 and 1.3 clearly indicate that the classical second Cushing–Henson
conjecture is only satisfied for special choices of periodic α.

In the following, we study the quantum calculus version of the Beverton–Holt
equation, namely the Beverton–Holt q-difference equation. The equation was formulated
and its unique one-periodic solution was derived in [5]. In [5], the authors also analyzed
the Cushing–Henson conjectures for the case of a one-periodic inherent growth rate.
A one-periodic inherent growth rate for the q-difference equation corresponds to
a constant inherent growth rate in the classical Beverton–Holt model. Recently, the
periodically forced Beverton–Holt q-difference equation with periodic coefficients has
been studied in [10], and the Cushing–Henson conjectures were discussed. In this
work, we extend the study of the Beverton–Holt q-difference equation with periodic
growth rate and periodic carrying capacity and aim for a modification of the second
Cushing–Henson conjecture consistent with the existing formulations. We begin the
investigation with a brief introduction to quantum calculus.

2. SOME QUANTUM CALCULUS ESSENTIALS

In this section, we provide some quantum calculus prerequisites. Throughout, let q > 1.
Definition 2.1 ([6, Definition 1.1]). The forward jump operator σ : qN0 → qN0 is
defined by

σ(t) := qt, t ∈ qN0 .

Definition 2.2 ([6, Definition 2.25]). A function p : qN0 → R is called regressive
provided

1 + µ(t)p(t) 6= 0 for all t ∈ qN0 , where µ(t) = (q − 1)t.
The set of all regressive functions is denoted by R. Moreover, p ∈ R is called positively
regressive, denoted by p ∈ R+, if

1 + µ(t)p(t) > 0 for all t ∈ qN0 .

Using the introduced “graininess” µ, the derivative can be defined as follows.
Definition 2.3. The derivative of a function f : qN0 → R is given by

f∆(t) = f(σ(t))− f(t)
µ(t) = f(qt)− f(t)

(q − 1)t for all t ∈ qN0 .

Theorem 2.4 ([6, Theorem 2.62]). Suppose p ∈ R. Let t0 ∈ qN0 and y0 ∈ R.
The unique solution of the initial value problem

y∆ = p(t)y, y(t0) = y0

is given by
y = ep(·, t0)y0.

Theorem 2.5 ([6, Theorem 2.44]). If p ∈ R+ and t0 ∈ qN0 , then ep(t, t0) > 0 for all
t ∈ qN0 .
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Definition 2.6 ([5]). Let p ∈ R and s ∈ qN0 . The exponential function is defined by

ep(t, s) =
∏

k∈[s,t)∩qN0

(1 + (q − 1)kp(k)) for all t ∈ qN0with t > s,

ep(s, s) = 1, and ep(t, s) = 1
ep(s,t) for t < s.

The integral in quantum calculus is defined in the following way.
Definition 2.7 ([5, Definition 2.6]). Let m, n ∈ N0 with m < n. For f : qN0 → R,
we define

qn∫

qm

f(t) ∆t := (q − 1)
n−1∑

k=m
qkf(qk). (2.1)

A special case follows directly by the previous definition.

qm+1∫

qm

f(t) ∆t := (q − 1)qmf(qm). (2.2)

Theorem 2.8 ([6, Theorems 2.36 and 2.39]). If p ∈ R and a, b, c ∈ qN0 , then
b∫

a

p(t)ep(t, c)∆t = ep(b, c)− ep(a, c), (2.3)

b∫

a

p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b), (2.4)

the semigroup property holds:

ep(t, r)ep(r, s) = ep(t, s). (2.5)

The following operations will be useful.
Definition 2.9 ([7, p. 10]). Define the “circle plus” addition on R as

(p⊕ q)(t) = p(t) + q(t) + (q − 1)tp(t)q(t),

and the “circle minus” subtraction as

(p	 q)(t) = p(t)− q(t)
1 + (q − 1)tq(t) .

Theorem 2.10 ([7, Theorem 1.39]). Assume p, q ∈ R. Then

ep⊕q(t, s) = ep(t, s)eq(t, s), (2.6)

e	p(t, s) = ep(s, t) = 1
ep(t, s)

. (2.7)
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Besides the circle plus and circle minus operation, a circle dot operation is defined
as follows.

Definition 2.11 ([7, p. 18]). The circle dot multiplication � of a constant α ∈ R and
a function p ∈ R+ is defined as

(α� p) (t) = αp(t)
1∫

0

(1 + µ(t)hp(t))α−1dh.

Example 2.12. Let p ∈ R+ and α = 1
2 . Then

(
1
2 � p

)
(t) = 1

2

1∫

0

p(t)√
1 + µ(t)hp(t)

dh

= 1
µ(t)

(√
1 + µ(t)p(t)− 1

)
= p(t)

1 +
√

1 + µ(t)p(t)
.

Note that by the definition of the circle dot multiplication,
(

1
2 � (−α)

)
⊕
(

1
2 � (−α)

)
= −α.

We furthermore need the definition of periodicity for functions f : qN0 → R.

Definition 2.13 ([4, Definition 3.1]). A function f : qN0 → R is called ω-periodic
provided

f(t) = qωf(qωt) for all t ∈ qN0 .

Lemma 2.14. If f, g ∈ R are ω-periodic, then f ⊕ g and f 	 g is ω-periodic.

Proof. We have

qω (f ⊕ g) (qωt) = qω(f(qωt) + g(qωt) + µ(qωt)f(qωt)g(qωt))
= qω(q−ωf(t) + q−ωg(t) + qωµ(t)q−ωf(t)q−ωg(t)) = (f ⊕ g)(t)

for all t ∈ qN0 , as well as

qω (	g) (qωt) = qω
−g(qωt)

1 + µ(qωt)g(qωt) = qω
−q−ωg(t)

1 + qωµ(t)q−ωg(t) = (	g)(t).

Using f 	 g = f ⊕ (	g) completes the proof.

Lemma 2.15. If f ∈ R is ω-periodic, then

ef (qωt, qωt0) = ef (t, t0) for all t ∈ qN0 (2.8)

and
ef (qωt, t) = ef (qωt0, t0) for all t ∈ qN0 . (2.9)
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Proof. Let m,n ∈ N0 such that t0 = qm and t = qn, and assume without loss of
generality t > t0. Then

ef (qωt, qωt0) =
n+ω−1∏

i=m+ω

(
1 + µ(qi)f(qi)

)

=
n−1∏

i=m

(
1 + µ(qi+ω)f(qi+ω)

)
=

n−1∏

i=m

(
1 + qωµ(qi)q−ωf(qi)

)

=
n−1∏

i=m

(
1 + µ(qi)f(qi)

)
= ef (t, t0).

For (2.9), note that

ef (qωt, t) = ef (qωt, qωt0)ef (qωt0, t) = ef (t, t0)ef (qωt0, t) = ef (qωt0, t0),

which completes the proof.

3. THE BEVERTON–HOLT q-DIFFERENCE EQUATION

The Beverton–Holt q-difference equation was presented in [5] as

x(qt) = ν(t)K(t)x(t)
K(t) + (ν(t)− 1)x(t) , (3.1)

where K : qN0 → R+ is the carrying capacity, ν : qN0 → (1,∞) is the intrinsic growth
rate, and x : qN0 → R+ represents the population density. Using the substitution
a(t) = ν(t)−1

µ(t)ν(t) , we obtain the difference equation

x(qt) = K(t)x(t)
(1− µ(t)a(t))K(t) + µ(t)a(t)x(t) , (3.2)

which is equivalent to

x(qt)K(t)− µ(t)x(qt)a(t)K(t) + µ(t)x(qt)a(t)x(t) = K(t)x(t),

i.e.,

x∆(t) = x(qt)a(t)
(

1− x(t)
K(t)

)
. (3.3)

Note that (3.3) is in the form of a logistic dynamic equation, introduced in [7]. This is
considered to be the time scales analogue of the logistic differential equation

x′(t) = x(t)a(t)
(

1− x(t)
K(t)

)
.
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The q-difference equation (3.3) is solved by using the transformation u = 1/x,
which yields

u∆(t) = −a(t)u(t) + a(t)
K(t) .

This is a first-order q-difference equation with the solution given in [6] as

u(t) = e−a(t, t0)u(t0) +
t∫

t0

e−a(t, qs) a(s)
K(s)∆s. (3.4)

In [5], (3.1) was discussed considering a one-periodic growth rate ν. The authors
provided the first Cushing–Henson conjecture and therefore the existence of a unique
periodic solution that is globally attractive. In [10], the authors generalized the
discussion to the Beverton–Holt q-difference equation with periodic coefficients and
obtained the following conjecture.
Theorem 3.1 (First Cushing–Henson Conjecture). Assume





K : qN0 → R+ is ω-periodic,
a : qN0 → R+ is ω-periodic and − a ∈ R+,

e−a(t0qω, t0) 6= qω.

(3.5)

Then (3.2) has a unique ω-periodic solution that globally attracts all its solutions.
The unique ω-periodic solution is given in [10] as

x̄(t) = λ




tqω∫

t

e−a(t, σ(s)) a(s)
K(s)∆s



−1

, (3.6)

where
λ = qωe−a(t0, t0qω)− 1 6= 0.

Cushing and Henson predicted further that the introduction of a periodic environ-
ment is deleterious to the population, i.e, the average of the periodic solution is strictly
less than the average of the carrying capacity. The authors in [5] investigated the
Beverton–Holt q-difference equation with one-periodic inherent growth rate. Already
in the case of a one-periodic growth rate ν, the second Cushing–Henson conjecture
was not satisfied and the authors offered the following modification.
Theorem 3.2 ([5, Theorem 5.6]). If a is one-periodic, i.e., a(t) = α

t , α ∈ R+, and
K is ω-periodic, then the average of the unique ω-periodic solution is strictly less than
the average of the carrying capacity times a constant, i.e.,

1
ω

t0q
ω∫

t0

x̄(t) ∆t < α+ 1
α





1
ω

t0q
ω∫

t0

K(t) ∆t



 . (3.7)

If K is one-periodic, then (3.7) becomes an equality.
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Note that a one-periodic function is a constant function in the discrete and
continuous time setting. The analysis of the Beverton–Holt q-difference equation was
extended to an ω-periodic growth rate in [10] and the following results were obtained.

Theorem 3.3 ([10, Conjecture 2]). The average of the ω-periodic solution x̄ of (3.2)
is strictly less than the average of the ω-periodic carrying capacity K times a function
v over one ω-period, where v(t) = C(r(t)− 1) with

C = λ

(e−a(t0, t0qω)− 1)2
q

(q − 1)
1

t0qω

and

r(t) = 21−
√

1− µ(t)a(t)
µ(t)a(t) ,

i.e.,

1
ω(q − 1)

t0q
ω∫

t0

x̄(t)∆t < 1
ω(q − 1)

t0q
ω∫

t0

v(t)K(t)∆t,

with equality for K constant.

Note that the last two conjectures are equalities if the carrying capacity is constant.
In this paper, we relate the periodic solution and the periodically forced environment
in such a way that the upper bound is obtained for an element of the family of periodic
environments. This differs from the obtained results as a constant function is not
(one-)periodic by Definition 2.13.

We also need to define the average of a function in the quantum calculus setting.
To do so, let us recall the construction of the average of a function in the continuous
and discrete cases. For f ∈ C(R), the average of a function on [a, b] is defined as:

fav = 1
b− a

b∫

a

f(t)dt

and in the discrete case

fav = 1
n

n−1∑

i=0
f(i).

In particular, if f(t) = F , F constant, then fav = F in the continuous and the discrete
time setting. The reason is that we essentially take the average value of the area under
the function. A constant function in the discrete and continuous setting corresponds
to a one-periodic function in the quantum calculus setting; so we consider f : qN0 → R,
f(t) = F

t . Similar as in the discrete case, the integral expression represents the
area of rectangles, see (2.1). To understand the normalization factor C such that
fav = 1

C

∫ b
a
f(s)∆s, let us realize that the area of the rectangles is constant for each

rectangle, i.e., f(t)d(t, qt) = f(s)d(s, qs), see Figure 1.
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f(t)=2/t

Fig. 1. An example of a one-periodic function f(t) = 2
t
for 2N0

Since the area of the rectangles is preserved, every rectangle has an area of
f(q0)µ(q0) = F (q − 1). If we add all n rectangles, we obtain F (q − 1)n as the total
area. We therefore have

F = fav = 1
C

qωt0∫

t0

f(s)∆s = 1
C

ω−1∑

i=0
µ(qi)F

qi
= 1
C
F (q − 1)ω.

This gives the normalization constant as C = ω(q−1). Note that we can always reduce
the area of such a rectangle to the area formed by f(q0)(q − 1), even if the lower
boundary is not q0. We therefore formulate the average of a function f : qN0 in the
following way.

Definition 3.4. The average of a function f : qN0 → R on the interval [t, qωt]∩ qN0 is

fav = 1
ω(q − 1)

qωt∫

t

f(s)∆s.

Using the definition of averages in the quantum calculus setting, we can now
formulate theorems relating averages of the periodic solution to the periodic carrying
capacity. Let us initiate the discussion by investigating the Beverton–Holt q-difference
equation with a two-periodic growth rate.
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4. TWO-PERIODIC GROWTH RATE

Let us first define the minimal periodicity of a function.

Definition 4.1. A function p : qN0 → R is said to be periodic with order ω or order
ω-periodic, if ω ∈ N is the smallest possible value such that qωp(qωt) = p(t) for all
t ∈ qN0 .

Lemma 4.2. If p : qN0 → R is periodic with order ω, then there exist constants
p0, p1, . . . , pω−1 such that

p(t) = pi
t
, where i = (logq t) (mod ω). (4.1)

Proof. If p is any order ω-periodic function, then tp(t) can take at most ω different
values, namely pi := qit0p(qit0). To realize that, let t ∈ qN0 . Then there exist n,m ∈ N0,
such that t = qnω+m, where 0 ≤ m ≤ ω − 1. We have

tp(t) = qnω+mp(qnω+m) = qnωqmp(qnωqm) = qmp(qm) = pm,

where 0 ≤ m ≤ ω − 1. This completes the proof.

Note that

logq(tqω) (mod ω) = (logq t) (mod ω) + ω (mod ω) = logq t (mod ω).

In the special case of an order two-periodic function p : qN0 → R, we have

p(t) =
{
ρ0
t if logq t is even,
ρ1
t if logq t is odd

(4.2)

for ρi constant, i = 0, 1, and ρ0 6= ρ1.

Theorem 4.3. The average of the two-periodic solution x̄ of (3.2) is strictly less than
the average of λvK/(q − 1), i.e.,

1
2(q − 1)

t0q
2∫

t0

x̄(t)∆t < λ

2(q − 1)2

t0q
2∫

t0

v(t)K(t)∆t, (4.3)

where
λ = q2e−a(t0, t0q2)− 1,

and
v(t) =

Alogq t(
Alogq t + qBlogq t

)2 + q
Blogq(t+1)

(
Alogq(t+1) + qBlogq(t+1)

)2

with An := an

1−(q−1)an
and Bn := AnAn+1

an
, n = 0, 1, and logq t = logq t (mod 2). If K is

one-periodic, then (4.3) becomes an equality.
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Useful in the proof of Theorem 4.3 is the following lemma.

Lemma 4.4. Let f : qN0 × qN0 → R, ω ∈ N0. Then

t0q
ω∫

t0

tqω∫

t

f(s, t)∆s∆t =
t0q

ω∫

t0

sq∫

t0

f(s, t)∆t∆s+
t0q

2ω∫

t0qω

t0q
ω∫

sq1−ω

f(s, t)∆t∆s. (4.4)

Proof. Let t0 = qm, m ∈ N0. Then

t0q
ω∫

t0

tqω∫

t

f(s, t)∆s∆t (2.1)= (q − 1)
m+ω−1∑

k=m
qk(q − 1)

k+ω−1∑

i=k
qif(qi, qk)

= (q − 1)
m+ω−1∑

i=m
qi(q − 1)

i∑

k=m
qkf(qi, qk)

+ (q − 1)
m+2ω−2∑

i=m+ω
qi(q − 1)

m+ω−1∑

k=i+1−ω
qkf(qi, qk)

(2.1)=
t0q

ω∫

t0

sq∫

t0

f(s, t)∆t∆s+
t0q

2ω∫

t0qω

t0q
ω∫

sq1−ω

f(s, t)∆t∆s

−
t0q

2ω∫

t0q2ω−1

t0q
ω∫

sq1−ω

f(s, t)∆t∆s

=
t0q

ω∫

t0

sq∫

t0

f(s, t)∆t∆s+
t0q

2ω∫

t0qω

t0q
ω∫

sq1−ω

f(s, t)∆t∆s,

where we have used that
∫ c
c
f(s)∆s = 0. This completes the proof.

Proof of Theorem 4.3. Let t0 = qm,m ∈ N0. Since a andK are two-periodic, a(t) = αt

t
and K(t) = κt

t as in (4.2). Applying the weighted Jensen inequality [18, Theorem 2.2]
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(see also [1]), we get

t0q
2∫

t0

x̄(t)∆t (3.6)=
t0q

2∫

t0

λ
tq2∫
t

e−a(t, σ(s)) a(s)
K(s)∆s

∆t

=
t0q

2∫

t0

λ
tq2∫
t

e−a(t, σ(s)) a(s)s
K(s)s∆s

∆t

< λ

t0q
2∫

t0

tq2∫
t

e−a(t, σ(s))a(s)K(s)s2∆s
(
tq2∫
t

e−a(t, σ(s))a(s)s∆s
)2 ∆t

= λ

t0q
2∫

t0

tq2∫
t

e−a(t, σ(s))αsκs∆s
(
σ(t)∫
t

e−a(t, σ(s))αs∆s+
σ(tq)∫
tq

e−a(t, σ(s))αs∆s
)2 ∆t

(2.1)= λ

t0q
2∫

t0

tq2∫
t

e−a(t, σ(s))αsκs∆s

[µ(t)e−a(t, tq)αt + µ(qt)e−a(t, tq2)αtq]2
∆t

= λ

t0q
2∫

t0

tq2∫

t

1
µ2(t)

e−a(t, σ(s))αsκs
[e−a(t, tq)αt + qe−a(t, tq2)αtq]2

∆s∆t

(4.4)= λ

t0q
2∫

t0

sq∫

t0

1
µ2(t)

e−a(t, σ(s))αsκs
[e−a(t, tq)αt + qe−a(t, tq2)αtq]2

∆t∆s

+ λ

t0q
4∫

t0q2

t0q
2∫

sq−1

1
µ2(t)

e−a(t, σ(s))αsκs
[e−a(t, tq)αt + qe−a(t, tq2)αtq]2

∆t∆s.
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Denote αt0 = α0, αqt0 = α1, κt0 = κ0, and κqt0 = κ1. By integrating, the last
expression is equal to

λµ(t0)
t0q∫

t0

1
µ2(t)

e−a(t, t0q)α0κ0

[e−a(t, tq)αt + qe−a(t, tq2)αtq]2
∆t

+ λµ(qt0)
t0q∫

t0

1
µ2(t)

e−a(t, t0q2)α1κ1

[e−a(t, tq)αt + qe−a(t, tq2)αtq]2
∆t

+ λµ(qt0)
t0q

2∫

t0q

1
µ2(t)

e−a(t, t0q2)α1κ1

[e−a(t, tq)αt + qe−a(t, tq2)αtq]2
∆t

+ λµ(q2t)
t0q

2∫

t0q

1
µ2(t)

e−a(t, t0q3)α0κ0

[e−a(t, tq)αt + qe−a(t, tq2)αtq]2
∆t

(2.1)= λ
e−a(t0, t0q)κ0α0

[e−a(t0, t0q)α0 + qe−a(t0, t0q2)α1]2

+ λq
e−a(t0, t0q2)κ1α1

[e−a(t0, t0q)α0 + qe−a(t0, t0q2)α1]2

+ λ
e−a(t0q, t0q2)κ1α1

[e−a(t0q, t0q2)α1 + qe−a(t0q, t0q3)α0]2

+ λq
e−a(t0q, t0q3)κ0α0

[e−a(t0q, t0q2)α1 + qe−a(t0q, t0q3)α0]2
,

where we have applied the periodicity condition on a and K. Using the definition of
the exponential function, the last expression is equal to

λ

1
1−(q−1)α0(

α0
1−(q−1)α0

+ q α1
(1−(q−1)α0)(1−(q−1)α1)

)2κ0α0

+ λq

1
(1−(q−1)α0)(1−(q−1)α1)(

α0
1−(q−1)α0

+ q α1
(1−(q−1)α0)(1−(q−1)α1)

)2κ1α1

+ λ

1
1−(q−1)α1(

α1
1−(q−1)α1

+ q α0
(1−(q−1)α0)(1−(q−1)α1)

)2κ1α1

+ λq

1
(1−(q−1)α0)(1−(q−1)α1)(

α1
1−(q−1)α1

+ q α0
(1−(q−1)α0)(1−(q−1)α1)

)2κ0α0.
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Introducing An := αn

1−(q−1)αn
and rearranging terms, we can express the previous

expression as

λκ0


 A0(

A0 + qA1
1

1−(q−1)α0

)2 + q
A0

1
1−(q−1)α1(

A1 + qA0
1

1−(q−1)α1

)2




+λκ1


 A1(

A1 + qA0
1

1−(q−1)α1

)2 + q
A1

1
1−(q−1)α0(

A0 + qA1
1

1−(q−1)α0

)2


 .

Introducing the notation Bn := An−1An

αn
yields the result. The weighted Jensen

inequality is an equality if the nonweight is constant w.r.t. the integrating variable
[16, p. 298]. In our case, the condition translates to K(s)s = κ, i.e., K(s) = κ

s for
κ ∈ R. Hence K is one-periodic.

Remark 4.5. If a is one-periodic, then a(t) = α
t , i.e., α0 = α1 = α for 0 < (q−1)α < 1.

We then have

v(t) =
(

A
(
A+ qA

2

α

)2 + q
A2

α(
A+ qA

2

α

)2

)

=
α

1−(q−1)α(
α

1−(q−1)α + q α
(1−(q−1)α)2

)2 + q

α
(1−(q−1)α)2

(
α

1−(q−1)α + q α
(1−(q−1)α)2

)2

= 1
α

1−(q−1)α

(
1 + q 1

(1−(q−1)α)

)2 + q
1

α
(

1 + q 1
(1−(q−1)α)

)2

= 1
(

1 + q 1
(1−(q−1)α)

)2

(
1− (q − 1)α+ q

α

)
= (1− (q − 1)α)2

(1 + q − (q − 1)α)
1
α
.

That yields

λv(t) =
(

q2

(1− (q − 1)α)2 − 1
)

(1− (q − 1)α)2

(1 + q − (q − 1)α)
1
α

= (q − 1)1 + α

α
.

Theorem 4.3 reads now as

1
2(q − 1)

t0q
2∫

t0

x̄(t)∆t < 1
2(q − 1)

1 + α

α

t0q
2∫

t0

K(t)∆t,

which is consistent with (3.7).
Example 4.6. Let us consider the following example, where a,K are 2-periodic with
the values

a(qn) =
{

0.2
qn if n is even,
0.5
qn if n is odd,

K(qn) =
{

0.6
qn if n is even,
0.8
qn if n is odd,

(4.5)
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n ∈ N0 and t0 = q = 1.2. The inequality provided in Theorem 4.3 is visualized
in Figure 2.

Fig. 2. Carrying capacity given by ∗, solution by o. Solid line is the average of the 2-periodic
solution, dashed line is the average of the weighted carrying capacity.

Example 4.7. Let us slightly change the carrying capacity from Example 4.6 and
consider the 2-periodic coefficients

a(qn) =
{

0.2
qn if n is even,
0.5
qn if n is odd,

K(qn) =
{

0.3
qn if n is even,
0.9
qn if n is odd,

(4.6)

and t0 = q = 1.2. The inequality provided in Theorem 4.3 is visualized in Figure 3.
Recall that in the case of a 1-periodic carrying capacity, the average of the periodic

solution is equal to the weighted average of the carrying capacity. In Figure 2, the
2-periodic factors of the carrying capacity are relatively close with 0.6 and 0.8. If
the difference is however increased, assuming all other values fixed, we see that the
difference between the average of the corresponding periodic solution and the weighted
average of the carrying capacity is also increased, see Figure 3.
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Fig. 3. Carrying capacity given by ∗, solution by o. Solid line is the average of the 2-periodic
solution, dashed line is the average of the weighted carrying capacity.

5. ω-PERIODIC GROWTH RATE

Throughout this section, we assume (3.5). We present two inequalities relating the
ω-periodic solution x̄ and the ω-periodic environment. The first formulation is a gener-
alization of the theorem we have discussed in the previous subsection for two-periodic
coefficients.
Theorem 5.1. The average of the ω-periodic solution x̄ of (3.2) is strictly less than
the average of the order ω-periodic carrying capacity K times a function, i.e.,

1
ω(q − 1)

t0q
ω∫

t0

x̄(t)∆t < λ

ω(q − 1)

t0q
ω∫

t0

v(t)K(t)∆t, (5.1)

where λ = qωe−a(t0, qωt0)− 1 and

v(s) = a(s)s2





σ(s)∫

t0

e−a(t, σ(s))
µ2(t)g2(t) ∆t+ (λ+ 1)

t0q
ω∫

σ(s)

e−a(t, σ(s))
µ2(t)g2(t) ∆t




,
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with

g(t) :=
ω−1∑

n=0
qne−a(t, tqn+1)a(tqn)tqn.

The inequality (5.1) is an equality if K is one-periodic.

Proof. Let t0 = qm,m ∈ N0. Applying the weighted Jensen inequality [18, Theorem 2.2]
yields

t0q
ω∫

t0

x̄(t)∆t (3.6)= λ

t0q
ω∫

t0

1
tqω∫
t

e−a(t, σ(s)) a(s)
K(s)∆s

∆t

< λ

t0q
ω∫

t0

tqω∫
t

e−a(t, σ(s))a(s)K(s)s2∆s
(
tqω∫
t

e−a(t, σ(s))a(s)s∆s
)2 ∆t

= λ

t0q
ω∫

t0

tqω∫
t

e−a(t, σ(s))a(s)K(s)s2∆s
(
∑ω−1
n=0

σ(tqn)∫
tqn

e−a(t, σ(s))a(s)s∆s
)2 ∆t

(2.2)= λ

t0q
ω∫

t0

tqω∫
t

e−a(t, σ(s))a(s)K(s)s2∆s
(∑ω−1

n=0 µ(tqn)e−a(t, σ(tqn))a(tqn)tqn
)2 ∆t

= λ

t0q
ω∫

t0

tqω∫
t

e−a(t, σ(s))a(s)K(s)s2∆s

µ(t)2
(∑ω−1

n=0 q
ne−a(t, tqn+1)a(tqn)tqn

)2 ∆t.

Define

g(t) :=
ω−1∑

n=0
qne−a(t, tqn+1)a(tqn)tqn.
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Then

g(qωt) =
ω−1∑

n=0
qne−a(tqω, tqωqn+1)a(tqωqn)tqωqn

=
ω−1∑

n=0
qne−a(t, tqn+1)a(tqn)tqn = g(t),

i.e., g takes at most ω different values. We therefore have

t0q
ω∫

t0

x̄(t)∆t < λ

t0q
ω∫

t0

tqω∫

t

e−a(t, σ(s))a(s)K(s)s2

µ(t)2g2(t) ∆s∆t

(4.4)= λ

t0q
ω∫

t0

a(s)K(s)s2
sq∫

t0

e−a(t, σ(s))
µ(t)2g2(t) ∆t∆s

+ λ

t0q
2ω∫

t0qω

a(s)K(s)s2
t0q

ω∫

sq1−ω

e−a(t, σ(s))
µ(t)2g2(t) ∆t∆s.

Realize that we can write the second integral as

t0q
2ω∫

t0qω

a(s)K(s)s2
t0q

ω∫

sq1−ω

e−a(t, σ(s))
µ(t)2g2(t) ∆t∆s

(2.1)=
m+2ω−1∑

l=m+ω
µ(ql)a(ql)K(ql)q2l

m+ω−1∑

k=l+1−ω
µ(qk)e−a(qk, σ(ql))

µ(qk)2g2(qk)

=
m+ω−1∑

l=m
µ(ql+ω)a(ql+ω)K(ql+ω)q2(l+ω)

m+ω−1∑

k=l+1

e−a(qk, σ(ql+ω))
µ(qk)g2(qk)

=
m+ω−1∑

l=m
µ(ql)a(ql)K(ql)q2lqω

m+ω−1∑

k=l+1

e−a(t0, t0qω)e−a(qk, σ(ql))
µ(qk)g2(qk)

(2.1)=
t0q

ω∫

t0

a(s)K(s)s2
t0q

ω∫

σ(s)

qωe−a(t0, t0qω)e−a(t, σ(s))
µ(t)2g2(t) ∆t∆s

=
t0q

ω∫

t0

a(s)K(s)s2
t0q

ω∫

σ(s)

(λ+ 1)e−a(t, σ(s))
µ(t)2g2(t) ∆t∆s.
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We can write the obtained upper bound now as

λ

t0q
ω∫

t0

a(s)K(s)s2

{ σ(s)∫

t0

e−a(t, σ(s))
µ(t)2g2(t) ∆t + (λ+ 1)

t0q
ω∫

σ(s)

e−a(t, σ(s))
µ(t)2g2(t) ∆t

}
∆s.

IfK is one-periodic, then the weighted Jensen inequality yields equality [16, p. 298].

Note that the function v does not depend on the choice of K, only on a. By using
the special structure of periodic functions suggested in (4.1), a(t) = at

t and K(t) = Kt

t ,
the inequality (5.1) reads as

1
ω(q − 1)

t0q
ω∫

t0

x̄(t)∆t

<
λ

ω(q − 1)

t0q
ω∫

t0

Ksas

{ σ(s)∫

t0

e−a(t, σ(s))
µ(t)2g2(t) ∆t+ (λ+ 1)

t0q
ω∫

σ(s)

e−a(t, σ(s))
µ(t)2g2(t) ∆t

}
∆s,

where

g(t) =
ω−1∑

n=0
qne−a(t, tqn+1)atqn .

A slightly different expression of (5.1) is possible:

1
ω(q − 1)

t0q
ω∫

t0

x̄(t)∆t

<
λ

ω(q − 1)

t0q
ω∫

t0

K(s)a(s)s2

{ t0q
ω∫

t0

e−a(t, σ(s))
µ(t)2g2(t) ∆t+ λ

t0q
ω∫

σ(s)

e−a(t, σ(s))
µ(t)2g2(t) ∆t

}
∆s,

with equality if K is one-periodic.
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Remark 5.2. If we choose ω = 1, i.e., a(t) = α
t and K(t) = κ

t , for a and K positive
constants, the right-hand side of (5.1) is

λ

t0q∫

t0

κα

{ σ(s)∫

t0

e−a(t, σ(s))
µ(t)2g2(t) ∆t+ (λ+ 1)

t0q∫

σ(s)

e−a(t, σ(s))
µ(t)2g2(t) ∆t

}

(2.1)= λµ(t0)κα
{ t0q∫

t0

e−a(t, qt0)
µ(t)2g2(t) ∆t+ (λ+ 1)

t0q∫

t0q

e−a(t, t0q)
µ(t)2g2(t) ∆t

}

= λµ(t0)καµ(t0) e−a(t0, t0q)
µ(t0)2g2(t0) = λκα

e−a(t0, t0q)
g2(t0)

= λκα
e−a(t0, t0q)

(e−a(t0, t0q)a(t0)t0)2 = λκ
e−a(t0, t0q)

α(e−a(t0, t0q))2

= κ

α

qe−a(t0, t0q)− 1
e−a(t0, t0q)

= κ

α
(q − 1)(1 + α) (2.2)= α+ 1

α

t0q∫

t0

K(t)∆t,

which is consistent with (3.7).

We can also relate weighted averages of the periodic solution and periodic carrying
capacity.

Theorem 5.3. The weighted average of the periodic solution is strictly less than
a weighted average of the carrying capacity, i.e.,

1
ω(q − 1)

qωt0∫

t0

w1(t)x̄(t)∆t < 1
ω(q − 1)

qωt0∫

t0

w2(t)K(t)∆t, (5.2)

where

w1(t) = −qt(−a	 P ), w2(t) = w1(t)1 + ta(t)
ta(t) ,

where P = p∆

p , and p(t) = t. Equality is obtained if K has the same period as α, given
by K(s) = C a(s)

1+µ(s)a(s) , where C is any constant.

Proof. Let us define the following functions to simplify the notation: m(t) = 1
µ(t)ta(t) ,

and n⊕m = −a; so m,n are ω-periodic. Let Φ = −a	 P . It is not hard to show that
eP (t, s) = t

s , for
p∆

p , and p(t) = t.
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We have

qωt0∫

t0

w1(t)x̄(t)∆t (3.6)=
qωt0∫

t0

w1(t) λ
qωt∫
t

e−a(t, qs) a(s)
K(s)∆s

∆t

=
qωt0∫

t0

w1(t) λ
qωt∫
t

en(t, qs)em(t, qs) a(s)se	m(s,t)
K(s)se	m(s,t)∆s

∆t

< λ

qωt0∫

t0

w1(t)
qωt∫
t

en	m(t, qs)a(s)K(s)s2e2
	m(s, t)∆s

(
qωt∫
t

en(t, qs)a(s)se	m(s, t)∆s
)2 ∆t

= λ

qωt0∫

t0

w1(t)
qωt∫
t

en⊕m(t, qs)a(s)K(s)s2e2
m(qs, s)∆s

(
qωt∫
t

en⊕m(t, qs)a(s)sem(qs, s)∆s
)2 ∆t

= λ

qωt0∫

t0

w1(t)
qωt∫
t

e−a(t, qs)a(s)K(s)s2(1 + µ(s)m(s))2∆s
(
qωt∫
t

e−a(t, qs)a(s)s(1 + µ(s)m(s))∆s
)2 ∆t

= λ

qωt0∫

t0

w1(t)
qωt∫
t

e−a(t, qs)a(s)K(s)s2(1 + µ(s)m(s))2∆s
(
qωt∫
t

e−a(t, qs)e	P (t, qs) tqa(s)(1 + µ(s)m(s))∆s
)2 ∆t

= λ

qωt0∫

t0

w1(t)
qωt∫
t

e−a(t, qs)a(s)K(s)s2(1 + µ(s)m(s))2∆s
(
qωt∫
t

−eΦ(t, qs)t(−Φ(s))∆s
)2 ∆t,

where we have used that

qΦ(s) = q (−a	 P ) (s) = −a(s)− p∆(s)
p(s) = −a(s)− 1

µ(s) (q − 1)

= −a(s)− 1
s

= −a(s)
(

1 + 1
a(s)s

)
= −a(s)(1 + µ(s)m(s)).
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We can further simplify the right hand side, using w2(s) := a(s)s(1 + µ(s)m(s))2

(therefore w2K is ω-periodic):

(2.4)= λ

qωt0∫

t0

w1(t)
t2

qωt∫
t

e−a(t, qs)sw2(s)K(s)∆s

(eΦ(t, qωt)− 1)2 ∆t

(2.9)= λ

(eΦ(t0, qωt0)− 1)2

qωt0∫

t0

w1(t)
t2

qωt∫

t

e−a(t, qs)sw2(s)K(s)∆s∆t

(4.4)= λ

(eΦ(t0, qωt0)− 1)2





qωt0∫

t0

sw2(s)K(s)
qs∫

t0

w1(t)
t2

e−a(t, qs)∆t∆s

+
q2ωt0∫

qωt0

sw2(s)K(s)
qωt0∫

q1−ωs

w1(t)
t2

e−a(t, qs)∆t∆s





= λ

(eΦ(t0, qωt0)− 1)2





qωt0∫

t0

sw2(s)K(s)
qs∫

t0

w1(t)
t2

e−a(t, qs)∆t∆s

+
m+2ω−1∑

i=m+ω
(q − 1)q2iw2(qi)K(qi)

m+ω−1∑

j=i+1−ω
(q − 1)w1(qj)

qj
e−a(qj , qi+1)





= λ

(eΦ(t0, qωt0)− 1)2





qωt0∫

t0

sw2(s)K(s)
qs∫

t0

w1(t)
t2

e−a(t, qs)∆t∆s

+
m+ω−1∑

i=m
(q − 1)q2i+ωw2(qi)K(qi)

m+ω−1∑

j=i+1
(q − 1)w1(qj)

qj
e−a(qj , qi+ω+1)





= λ

(eΦ(t0, qωt0)− 1)2





qωt0∫

t0

sw2(s)K(s)
qs∫

t0

w1(t)
t2

e−a(t, qs)∆t∆s

+
qωt0∫

t0

sw2(s)K(s)qω
qωt0∫

qs

w1(t)
t2

e−a(t, qω+1s)





= −λ
(eΦ(t0, qωt0)− 1)2





qωt0∫

t0

w2(s)K(s)
qs∫

t0

Φ(t)e−a	P (t, qs)∆t∆s

+
qωt0∫

t0

w2(s)K(s)
qωt0∫

qs

Φ(t)e−a	P (t, qω+1s)∆t∆s




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= − λ

(eΦ(t0, qωt0)− 1)2





qωt0∫

t0

w2(s)K(s)(1− eΦ(t0, qs))∆s

+
qωt0∫

t0

w2(s)K(s)(eΦ(qωt0, qω+1s)− eΦ(qs, qω+1s))∆s





(2.8)=
(2.9)
−λ(1− eΦ(t0, qωt0))

(eΦ(t0, qωt0)− 1)2

qωt0∫

t0

w2(s)K(s)∆s =
qωt0∫

t0

w2(s)K(s)∆s,

where we have used that

λ = qωe−a(t0, qωt0)− 1 = eΦ(t0, qωt0)− 1.

Dividing both sides by ω(q − 1) yields the result.

Example 5.4. Consider the case of a one-periodic growth rate, i.e., a(t) = α/t, then
the previous Theorem reads as

qωt0∫

t0

x̄(t)∆t < α+ 1
α

qωt0∫

t0

K(t)∆t, (5.3)

which is consistent with [5, Theorem 5.6]. To realize it, note that

w1(t) = α+ 1, w2(t) = (1 + α)2

α
,

because

w1(t) = −qt (−a(t)	 P ) = −qt
(
−a(t)

q
− (q − 1)

qµ(t)

)
= α+ 1,

and therefore
w2(t) = w1(t)1 + ta(t)

ta(t) = (α+ 1)1 + α

α
.

This is consistent with (3.7).
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