PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Technology for the Extraction of Natural Pectin from Juice Production Waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article, the questions of pectin extraction from citrus fruits are discussed. The research was carried out on the extracts obtained after squeezing the juice from citrus fruits: lemon (Georgian and Meer), Washington-Navel orange (Georgia and Turkey), Unshiu mandarin and the largest citrus fruit pomelo (China). Fruits collected in April-December were morphologically divided into flavedo, albedo, and tissue of fruit lobes, from which pectin isolates were obtained. The dependence of the production of isolates on the ratio of components of the hydromodule (acid: water), the type of acid (HCl, HNO3, H2SO4, H2C2O4 and C6 H8 O7), the duration of the process (1, 2, 3, 4, 5 and 24 hours) and the extraction temperature (20°) was investigated., 60°, 80°С), the type and time of fruit ripening, as well as the type of precipitation reagent pectin (AlCl3, CaCl2, 95% C2H5OH, isopropanol) and its concentration, duration of extraction (2h, 8h, 12h, 24h) and temperature (20, 40, 60, 70, 80°С). A technological scheme for obtaining pectin extracts was developed. Established: extraction of pectin depends on the type and time of fruit collection, temperature and duration of extraction, type of extractant; the ratio of water and acid in the hydromodule (Н2О : acid) should be 1:10; isolate should be extracted with HCl, H2SO4 or lemon acid; рН of the hydromodule of the isolate should be 1.8–2.0; Extraction of pectin should be carried out with 95% C2H5OH, during 24 hours, with a module of 1:3 at room temperature. Identification of pectin isolates and obtained samples was carried out by the method of high-efficiency liquid chromatography. Obtained: practically all samples contain pectin and galacturonic acid and do not contain polygalacturonic acid, which indicates the complete extraction of pectin.
Słowa kluczowe
EN
Twórcy
  • Georgian Technical University, LTD Batumi Water, 19 Tabukashvili str., Batumi GE 6000, Georgia
  • Department of Chemistry, Batumi Shota Rustaveli State University, 35/32 Ninoshvili/Rustaveli str., Batumi, GE 6010, Georgia
  • Department of Chemical and Biological Technology, Georgian Technical University, 77 Kostava str., Tbilisi, GE 0171, Georgia
Bibliografia
  • 1. Asra Hamidi (Ataran). 2022. Biotechnology Applications in the Pectin Industry, 44.
  • 2. Abdelrahman M.K. 2022. The Microbial Degradation for Pectin, 153.
  • 3. Abboud K.Y., Iacomini M., Simas F.F., et al. 2020. High methoxyl pectin from the soluble dietary fiber of passion fruit peel forms weak gel without the requirement of sugar addition. Carbohydr Polym., 246, 116–616.
  • 4. Bejanidze I., Kharebava T., Davitadze N., Koncelidze Z., Koncelidze L. 2019. Monograph: Obtaining environmentally friendly sorbent by membranę technology, Batumi, LTD „Grafi“, 123.
  • 5. Bejanidze I., Kharebava T., Davitadze N., Koncelidze Z. 2018. Food fiber – a multifunctional food ingredient Science Review, RS Global Sp. z O.O Warsaw, Poland, 28(2), 30–34.
  • 6. Davitadze N., Bejanidze I. 2012. Effective way to obtain food fiber by membrane methods technology. Second International Conference of young scientists “Chemistry today. ICYC– 2012. 21–23 April 2012. Tbilisi. Collection of works of International Conference, 29–31.
  • 7. Calabrò P.S., Panzera M.F. 2018. Anaerobic digestion of ensiled orange peel waste: Preliminary batch results. Therm Sci Eng Prog., 6, 355–360.
  • 8. Cameron R.G., Chau H.K., Manthey J.A. 2016. Continuous process for enhanced release and recovery of pectic hydrocolloids and phenolics from citrus biomass. J Chem Technol Biotechnol, 91, 2597–2606.
  • 9. Casas-Orozco D., Villa A.L., Bustamante F., et al. 2015. Process development and simulation of pectin extraction from orange peels. Food Bioprod Process, 96, 86–98.
  • 10. Conteratto C., Artuzo F.D., Benedetti Santos O.I., et al.2021. Biorefinery: A comprehensive concept for the sociotechnical transition toward bioeconomy. Renew Sustain Energy Rev, 151, 111527.
  • 11. Durán-Aranguren D.D., Ramírez C.J., Díaz L., Valderrama M.A, Sierra R. 2022. Pectins – The New-Old Polysaccharides: Production of Pectin from Citrus Residues: Process Alternatives and Insights on Its Integration under the Biorefinery Concept. http:// dx.doi.org/10.5772/intechopen.100153
  • 12. Fidalgo A., Ciriminna R., Carnaroglio D., et al. 2016. Eco-Friendly Extraction of Pectin and Essential Oils from Orange and Lemon Peels. ACS Sustain Chem Eng, 4, 2243–2251.
  • 13. Gómez-Mejía E., Rosales-Conrado N., León-González M.E., et al. 2019. Citrus peels waste as a source of value-added compounds: Extraction and quantification of bioactive polyphenols. Food Chem., 295, 289–299.
  • 14. Guo X., Zhang T., Meng H., et al. 2017. Ethanol precipitation of sugar beet pectins as affected by electrostatic interactions between counter ions and pectin chains. Food Hydrocoll., 65, 187–197.
  • 15. Güzel M., Akpınar Ö. 2019. Valorisation of fruit by-products: Production characterization of pectins from fruit peels. Food Bioprod Process, 115, 126–133.
  • 16. Hilali S., Fabiano-Tixier A.-S., Ruiz K., et al. 2019. Green Extraction of Essential Oils, Polyphenols, and Pectins from Orange Peel Employing Solar Energy: Toward a Zero-Waste Biorefinery. ACS Sustain Chem Eng, 7, 11815–11822.
  • 17. Hoz Vega S., Jaraba B.V., Mendoza J.P., et al. 2018. Effect of precipitating solvents on the extraction of pectin from the pomelo albedo by acid hydrolysis. Contemp Eng Sci, 11, 3849–3855.
  • 18. Kebaili M., Djellali S., Radjai M., et al. 2018. Valorization of orange industry residues to form a natural coagulant and adsorbent. J Ind Eng Chem, 64, 292–299.
  • 19. Köse M.D., Bayraktar O. 2018. Valorization of citrus peel waste. Nat Volatiles Essent Oils, 5, 10–18.
  • 20. Martín M.A., Siles J.A., Chica A.F., et al. 2010. Biomethanization of orange peel waste. Bioresour Technol., 101, 8993–899.
  • 21. Atta M.B., Ruiz-Larrea F. 2022. Fungal Pectinases in Food Technology, 57.
  • 22. Hassan J., Khan M.N.E.A., Rajib M.M.R., Suborna M.N., Akter J., Hasan FA. 2022. Sustainable Horticultural Waste Management: Industrial and Environmental Perspective, 330.
  • 23. Senit J.J., Velasco D., Manrique A.G., Sanchez-Barba M., Toledo J.M., Santos V.E., Garcia-Ochoa F., Yustos P., Ladero M. 2019. Orange peel waste upstream integrated processing to terpenes, phenolics, pectin and monosaccharides: Optimization approaches. Ind Crops Prod., 134, 370–381. https://doi.org/10.1016/j.indcrop.2019.03.060
  • 24. Akin-Ajani O.D.A.A., Okunlola A. 2021. Pharmaceutical Applications of Pectin. http://dx.doi.org/10.5772/intechopen.100152
  • 25. Ortiz-Sanchez M., Solarte-Toro J.C., Cardona-Alzate C.A. 2021.A comprehensive approach for biorefineries design based on experimental data, conceptual and optimization methodologies: The orange peel waste case. Bioresour Technol, 325, 124682.
  • 26. Ortiz-Sanchez M., Solarte-Toro J.C., Orrego-Alzate C.E., et al.2021. Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment. Biomass Convers Biorefinery, 11, 645–659.
  • 27. Ortiz-Sanchez M., Solarte-Toro J.C., González-Aguirre J.A., et al. 2020. Pre- feasibility analysis of the production of mucic acid from orange peel waste under the biorefinery concept. Biochem Eng J, 161, 107680.
  • 28. Patsalou M., Chrysargyris A., Tzortzakis N., et al. 2020. A biorefinery for conversion of citrus peel waste into essential oils, pectin, fertilizer and succinic acid via different fermentation strategies. Waste Manag, 113, 469–477.
  • 29. Rodsamran P., Sothornvit R. 2019. Microwave heating extraction of pectin from lime peel: Characterization and properties compared with the conventional heating method. Food Chem, 278, 364–372.
  • 30. Sebaoui O., Moussaoui R., Kadi H., et al. 2017. Kinetic Modeling of Pectin Extraction from Wasted Citrus Lemon L. Waste and Biomass Valorization, 8, 2329–2337.
  • 31. Schiermeier Q. 2011.Environment: Earth’s acid test. Nature, 471, 154–156.
  • 32. Tovar A.K., Godínez L.A., Espejel F., et al. 2019. Optimization of the integral valorization process for orange peel waste using a design of experiments approach: Production of high-quality pectin and activated carbon. Waste Manag, 85, 202–213.
  • 33. Tsouko E., Maina S., Ladakis D., et al. 2020. Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams. Renew Energy, 160, 944–954.
  • 34. Zupanič N., Mis N.F., Pravst I. 2019. Soft Drinks: Public Health Perspective. In: Trends in Non-alcoholic Beverages. Elsevier, 325–369.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ef81e30-cb93-4768-8d46-fbf7f081573f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.