PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Valorization of a steel industrial co-product for the development of alkali-activated materials : effect of curing environments

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
While natural resources are becoming scarce and climate change is accelerating, the recovery and recycling of wastes and by-products is an effective way to deal with the economic and ecological constraints of recent decades. The valorization of industrial by-products in civil engineering is a common practice either by their incorporation during the manufacture of Portland cements or as a partial replacement of cement during the production of concrete. The present work aims to develop waste-based alkali-activated materials WAAMs intended for civil engineering applications as a potential alternative to cement-based materials. A steel industrial by-product called commonly granulated blast furnace slag GBFS was used alone as a solid CaO-rich precursor; two alkaline activators such us sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) were used separately for the production of two-part alkali-activated materials. Besides the microstructure analysis of the hardened samples, the influence of activator/precursor mass ratio, NaOH molarity, and two curing environments (Room temperature and 60°C) on the compressive strength, water accessible porosity, mass loss, and drying shrinkage were assessed. The results showed that a high Liquid/Solid ratio leads to a decrease in the compressive strength of the samples, while high NaOH molarity significantly improves the mechanical properties by reducing the porosity of the specimens. Moreover, alkaline silicate activator provides higher compressive strengths compared to the alkaline hydroxide activator, especially when the samples were cured at room temperature where a maximum 28days-compressive strength value of 105.28 MPa was achieved. For the samples activated using sodium hydroxide solution, the results revealed that their curing at 60°C promotes obtaining high initial-compressive strengths (7 days) before decreasing subsequently as a function of the curing time. As an indication, at high alkaline concentration (NaOH = 9M), a mechanical strength decline of 21% was recorded between a curing time of 7 to 28 days. Moreover, curing at 60°C induced high porosity, significant mass loss and high drying shrinkage. SEM analysis highlighted a dense, homogeneous microstructure without apparent defects, in particular for the samples where the alkali silicate activator was used.
Rocznik
Strony
45--63
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
  • Laboratory of Polymers Treatment & Forming, M’Hamed Bougara University, Boumerdes, Algeria
  • Research Unit: Materials, Processes and Environment (UR-MPE), Faculty of Technology, M’hamed Bougara University, Boumerdes, Algeria
  • Department of Civil Engineering, Faculty of Sciences, Bouira University, Algeria
Bibliografia
  • 1. Wang W.C., Wang H.Y., Tsai H.C.: Study on engineering properties of alkali-activated ladle furnace slag geopolymer. Construction and Building Materials 123 (2016) 800–805.
  • 2. Gonçalves M., Vilarinho I.S., Capela M., Caetano A., Novais R.M., Labrincha J.A., Seabra M.P.: Waste-Based One-Part Alkali Activated Materials. Materials 14 (2021), 2911.
  • 3. Omur T., Kabay N., Miyan N., Ozkan H., Ozkan C.: The effect of alkaline activators and sand ratio on the physico-mechanical properties of blast furnace slag based mortars. Journal of Building Engineering 58 (2022) 104998.
  • 4. Davidovits J.: Geopolymer: chemistry and application. J. Davidovits [ed.], Institut Géopolymère, Saint-Quentin, France, 2008.
  • 5. Reddy M.S., Dinakar P., Rao B.H.: Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete. Journal of Building Engineering 20 (2018) 712–722.
  • 6. Duxson P., Fernandez-Jimenez A., Provis J.L., Lukey G.C., Palomo A., Deventer J.: Geopolymer technology: the current state of the art. Journal of Materials Science 42 (9) (2007) 2917–2933.
  • 7. Oderji S.Y., Chen B., Ahmad M.R., Shah S.F.A.: Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators. Journal of Cleaner Production 225 (2019) 1–10.
  • 8. An Q., Pan H., Zhao Q., Wang D.: Strength development and microstructure of sustainable geopolymers made from alkali-activated ground granulated blast-furnace slag, calcium carbide residue, and red mud. Construction and Building Materials 356 (2022) 129279.
  • 9. Garcia-Lodeiro I., Palomo A., Fernández-Jiménez A., Macphee D.E.: Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cement and Concrete Research 41 (2011) 923–931.
  • 10. Davidovits J., Geopolymers inorganic polymeric new materials. Journal of Thermal Analysis and Calorimetry 37 (1991) 1633–1656.
  • 11. Abdollahnejad Z., Pacheco-Torgal F., De Aguiar J.B.: Eco-concrete: One-part geopolymer mixes. Proce. TRF Senior Research Scholars Progress II, Khon Kaen, Thailand, 2013. pp. 1-7.
  • 12. Askarian M., Tao Z., Adam G., Samali B.: Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete. Construction and Building Materials 186 (2018) 330–337.
  • 13. Askarian M., Tao Z., Samali B., Adam G., Shuaibu R.: Mix composition and characterisation of one-part geopolymers with different activators. Construction and Building Materials 225 (2019) 526–537.
  • 14. Nematollahi B., Sanjayan J., Qiu J., Yang E.: Micromechanics-based investigation of a sustainable ambient temperature cured one-part strain hardening geopolymer composite. Construction and Building Materials 131 (2017) 552–563.
  • 15. Sturm P., Gluth G.J.G., Brouwers H.J.H., Kühne H.C.: Synthesizing one-part geopolymers from rice husk ash. Construction and Building Materials 124 (2016) 961–966.
  • 16. Karam R., Paris M., Deneele D., Wattez T., Cyr M., Bulteel D.: Effect of sediment incorporation on the reactivity of alkali-activated GGBFS systems. Materials and Structure (2021) 54 118.
  • 17. Marvila M.T, De Azevedo A.R.G, Oliveira L.B, Xavier G.D.C, Fontes Vieira C.M. : Mechanical, physical and durability properties of activated alkali cement based on blast furnace slag as a function of %Na2O. Case Studies in Construction Materials 15 (2021) e00723.
  • 18. Provis J.L., Bernal S.A.: Geopolymers and Related Alkali-Activated Materials. Annual Review of Materials Research 44 (2014) 299–327.
  • 19. Provis J.L., Van Deventer J.S.J., Alkali Activated Materials. State-of-the-Art-Report, J.L. Provis and J.S.J. Van Deventer [eds.], New York London, 2014.
  • 20. Guo W., Zhao Q., Sun Y., Xue C., Bai Y., Shi Y.: Effects of various curing methods on the compressive strength and microstructure of blast furnace slag-fly ash-based cementitious material activated by alkaline solid wastes. Construction and Building Materials 357 (2022) 129397.
  • 21. Suwan T., Fan M.: Effect of manufacturing process on the mechanisms and mechanical properties of fly ash-based geopolymer in ambient curing temperature. Materials and Manufacturing Processes 32 (2017) 461–467.
  • 22. Peng M.X., Wang Z.H., Xiao Q.G., Song F., Xie W., Yu L.C., Huang H.W., Yi S.J.: Effects of alkali on one-part alkali-activated cement synthesized by calcining bentonite with dolomite and Na2CO3. Applied Clay Science 139 (2017) 64–71.
  • 23. Van Deventer J.S.J., Feng D., Duxson P.: Dry mix cement composition, methods and system involving same. Patent N° 7,691,198 B2, USA, 2010.
  • 24. Li X., Wang Z., Jiao Z.: Influence of curing on the strength development of calcium-containing geopolymer mortar. Materials 6 (2013) 5069–5076.
  • 25. O'Connor S.J., MacKenzie K.J.D.: Synthesis, characterization and thermal behavior of lithium aluminosilicate inorganic polymers. Journal of Materials Science 45 (2010) 3707–3713.
  • 26. Jun Y., Han S.H., Kim J.H.: Early-age strength of CO2 cured alkali-activated blast furnace slag pastes. Construction and Building Materials 288 (2021) 123075.
  • 27. Manojsuburam E., Sakthivel E., Jayanthimani E.: A study on the mechanical properties of alkali activated ground granulated blast furnace slag and fly ash concrete, Materials Today: Proceedings 62 (2022) 1761–1764.
  • 28. Marsh A.T.M., Yue Z., Dhandapani Y., Button K., Adu-Amankwah S., Bernal S.A.: Influence of limestone addition on sodium sulphate activated blast furnace slag cements. Construction and Building Materials 360 (2022) 129527.
  • 29. Bilici S., Kabay N., Miyan N., Omur T., Ozkan H.: Effect of washing aggregate sludge waste on the properties of alkali-activated blast furnace slag. Journal of Building Engineering 63 (2023) 105527.
  • 30. Yon MS., Karatas M.: Evaluation of the mechanical properties and durability of self-compacting alkali-activated mortar made from boron waste and granulated blast furnace slag. Journal of Building Engineering 61 (2022) 105263.
  • 31. Duan W., Zhuge Y, Chow W.K.C, Keegan A., Liu Y., Siddique R.: Mechanical performance and phase analysis of an eco-friendly alkali-activated binder made with sludge waste and blast-furnace slag. Journal of Cleaner Production 374 (2022) 134024.
  • 32. Wang Q., Sun S., Yao G., Wang Z., Lyu X.: Preparation and characterization of an alkali-activated cementitious material with blast-furnace slag, soda sludge, and industrial gypsum. Construction and Building Materials 340 (2022) 127735.
  • 33. Adediran A., Yliniemi J., Lemougna P.N., Perumal P., Illikainen M.: Recycling high volume Fe-rich fayalite slag in blended alkali-activated materials: Effect of ladle and blast furnace slags on the fresh and hardened state properties. Journal of Building Engineering 63 (2023) 105436.
  • 34. Huang Z., Wang Q., Lu J.: The effects of cations and concentration on reaction mechanism of alkali-activated blast furnace ferronickel slag. Composites Part B 236 (2022) 109825.
  • 35. Sadeghian G., Behfarnia K., Teymouri M.: Drying shrinkage of one-part alkali-activated slag concrete. Journal of Building Engineering 51 (2022) 104263.
  • 36. Huang D., Yuan Q., Chen P., Tian X., Peng H.: Effect of activator properties on drying shrinkage of alkali-activated fly ash and slag. Journal of Building Engineering 62 (2022) 105341.
  • 37. Ou Z., Feng R., Li F., Liu G., Li N.: Development of drying shrinkage model for alkali-activated slag concrete. Construction and Building Materials 323 (2022) 126556.
  • 38. NF EN-196-3: Méthodes d'essai des ciments - Partie 3: Détermination du temps de prise et de la stabilité, septembre 2017.
  • 39. NF EN1015-11: Méthodes d'essai des mortiers pour maçonnerie - Partie 11: Détermination de la résistance en flexion et en compression du mortier durci. Novembre 2019.
  • 40. NF P18-459 : Béton - Essai pour béton durci - Essai de porosité et de masse volumique.
  • 41. Oualit M., Irekti A., Sarri A. Influence des conditions de durcissement et le taux d’alcalins sur les performances mécaniques des matériaux alcali-activés à base du laitier de haut fourneau. Matériaux & Techniques 110 (2022) 202.
  • 42. Gijbelsa K., Pontikesb Y., Samync P., Schreursa S., Schroeyersa W.: Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum. Cement and Concrete Research 132 (2020) 106054.
  • 43. Shi C., Roy D., Krivenko P.: Alkali-Activated Cements and Concretes. C. Shi, D. Roy, P. Krinvenko [ed.]. CRC Press, UK. 2006.
  • 44. Fernández-Jiménez A., Palomo J.G., Puertas F.: Alkali-activated slag mortars: Mechanical strength behaviour. Cement and Concrete Research 29(8) (1999), 1313–1321.
  • 45. Palomo A., Maltseva O., Garcia-Lodeiro I., Fernández-Jiménez A.: Portland versus alkaline cement: Continuity or clean break: A key decision for global sustainability. Frontiers in Chemistry (2021) 9 705475.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ef775b7-c564-4f37-ad1b-31aeee0b182c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.