PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distributional analysis of the stocks comprising the DAX 30

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we analyze the returns of stocks comprising the German stock index DAX with respect to the α-stable distribution. We apply nonparametric estimation methods such as the Hill estimator as well as parametric estimation methods conditional on the α-stable distribution. We find for both the nonparametric and parametric estimation methods that the α-stable hypothesis cannot be rejected for the return distribution. We then employ the GARCH model; the fit of innovations modeled with an underlying α-stable distribution is compared to the fit obtained from modelling the innovations with the skew-t distribution. The α-stable distribution is found to out-perform the skew-t distribution.
Rocznik
Strony
363--383
Opis fizyczny
Bibliogr. 38 poz., tab.
Twórcy
  • Department of Econometrics and Statistics, University of Karlsruhe, D-76128 Karlsruhe, Germany
autor
  • Department of Econometrics and Statistics, University of Karlsruhe, D-76128 Karlsruhe, Germany
  • Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106, U.S.A.
autor
  • School of Management, Yale University, New Haven, CT 06520, U.S.A.
Bibliografia
  • [1] V. Akgiray, G. G. Booth and O. Loistl, Stable laws are inappropriate for describing German stock returns, Allg. Stat. Arch. 73 (1989), pp. 115-121.
  • [2] J. Annaert, M. De Ceuster and A. Hodgson, Excluding sum stable distributions as an explanation of second moment condition failure - The Australian evidence, Investment Management and Financial Innovations (2005), pp. 30-38.
  • [3] R. C. Blattberg and N. J. Gonedes, A comparison of the stable and Student distributions as statistical models for stock prices, Journal of Business 47 (1974), pp. 244-280.
  • [4] T. Bollerslev, Generalized autoregressive conditional heteroscedasticity, J. Econometrics 31 (1986), pp. 307-327.
  • [5] P. K. Clark, A subordinated stochastic process model with finite variance for speculative prices, Econometrica 41 (1973), pp. 135-155.
  • [6] S. Degiannakis and E. Xekalaki, Autoregressive conditional heteroscedasticity (ARCH) models: A review, Quality Technology and Quantitative Management 1 (2004), pp. 271-324.
  • [7] E. Fama, The behavior of stock market prices, Journal of Business 38 (1965), pp: 34-105.
  • [8] E. Fama and R. Roll, Parameter estimates for symmetric stable distributions, J. Amer. Statist. Assoc. 66 (1971), pp. 331-338.
  • [9] C. Fernandez and F. J. Steel, On Bayesian modelling of fat tails and skewness, J. Amer. Statist. Assoc. 93 (1998), pp. 359-371.
  • [10] C. Francq and J. M. Zakoïan, Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes, Bernoulli 4 (2004), pp. 605-637.
  • [11] J. Franke, W. Härdle and C. M. Hafner, Statistics of Financial Markets. An Introduction, Springer, Berlin 2004.
  • [12] R. Garcia, E. Renault and D. Veredas, Estimation of Stable Distributions by Indirect Inference, technical report, University of North Carolina, Chapel Hill, 2004.
  • [13] A. Geyer and S. Hauer, ARCH Modelle zur Messung des Marktrisikos, ZFBF 43 (1991), pp. 65-75.
  • [14] B. E. Hansen, Autoregressive conditional density estimation, Internat. Econom. Rev. 35 (1994), pp. 705-730.
  • [15] B. M. Hill, A simple general approach to inference about the tail of a distribution, Ann. Statist. 3 (1975), pp. 1163-1174.
  • [16] M. C. Jones and M. J. Faddy, A skew extension of the t-distribution, with applications, J. Roy. Statist. Soc. Ser. B 65 (2003), pp. 159-174.
  • [17] T. Kaiser, Volatilitätsprognose mit Faktor-GARCH-Modellen, Gabler, Wiesbaden 1997.
  • [18] S. M. Kogon and D. B. Williams, Characteristic function based estimation of stable distribution parameters, in: A Practical Guide to Heavy Tails, R. J. Adler, R. A. Feldman and M. S. Taqqu (Eds.), Birkhäuser, Basel 1998.
  • [19] I. A. Koutrouvelis, An iterative procedure for the estimation of the parameters of stable laws; Comm. Statist. Simulation Comput. 10 (1) (1981), pp. 17-28.
  • [20] W. Krämer and R. Runde, Testing for autocorrelation among common stock returns, Statist. Papers 32 (1991), pp. 311-320.
  • [21] T. Lux, The stable Paretian hypothesis and the frequency of large returns: An examination of major German stocks, Appl. Finan. Econom. 6 (1996), pp. 463-475.
  • [22] T. Lux, The limiting extremal behaviour of speculative returns: An analysis of intra-daily data from the Frankfurt Stock Exchange, Appl. Finan. Econom. 11 (2001), pp. 299-315.
  • [23] B. Mandelbrot, The variation of certain speculative prices, Journal of Business 36 (1963), pp. 394-419.
  • [24] J. H. McCulloch, Simple consistent estimators of stable distribution parameters, Commun. Statist. Simulation Comput. 15 (1986), pp. 1109-1136.
  • [25] S. Mittnik, M. S. Doganoglu and D. Chenyao, Computing the probability density function of the stable Paretian distribution, Math. Comput. Modelling 29 (1999), pp. 235-240.
  • [26] S. Mittnik and M. S. Paolella, Prediction of financial downside-risk with heavy-tailed conditional distributions, working paper, Center for Financial Studies, 2003.
  • [27] H. P. Möller, Stock market research in Gemany: Some empirical results and critical remarks, in: Risk and Capital, G. Bamberg and K. Spremann (Eds.), Springer, Berlin 1984, pp. 224-242.
  • [28] D. Nelson, Conditional heteroskedasticity in asset returns: A new approach, Econometrica 59 (1991), pp. 347-370.
  • [29] J. P. Nolan, Stable Distributions, Springer, Berlin 2002.
  • [30] J. Nowicka-Zagrajek and A. Weron, Dependence structure of stable R-GARCH processes, Probab. Math. Statist. 21 (2001), pp. 371-380.
  • [31] S. T. Rachev, Handbook of Heavy Tailed Distributions in Finance, Elsevier, North-Holland 2003.
  • [32] S. T. Rachev and S. Mittnik, Stable Paretian Models in Finance, Wiley, Chichester 2000.
  • [33] K. Röder and G. Bamberg, Intraday Volatilität und Expiration-Day-Effekte am deutschen Aktienmarkt, Kredit und Kapital 29 (1996), pp. 244-276.
  • [34] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Chapman-Hall, New York 1994.
  • [35] M. Scheicher, Asset pricing with time-varying covariances: Evidence for the German stock market, working paper 9612, Department of Economics, University of Vienna, 1996.
  • [36] M. Scheicher, Nonlinear dynamics: Evidence for a small stock exchange, Empirical Economics 24 (1999), pp. 45-59.
  • [37] C. Schlag, Return variances of selected German stocks. An application of ARCH and GARCH processes, Statist. Papers 32 (1991), pp. 353-361.
  • [38] C. Schmitt, Volatilitätsprognosen für deutsche Aktienkurse mit ARCH- und Markov-Mischungsmodellen ZEW Discussion Paper 94-07 (1994).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ef5a0a4-715a-4aaf-bcef-587a81ac0b8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.