Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Badanie właściwości elektromagnetycznych i mechanicznych kompozytów powlekanych
Języki publikacji
Abstrakty
In this paper, a single-layer coated composite was prepared using PU2540 polyurethane as the matrix, nickel powder as the wave-absorbing functional particle, and coating technology on plain cotton fabric. The influence of the content of nickel powder on the dielectric properties (the real and imaginary parts and the loss tangent value), the shielding effectiveness and the mechanical properties was studied adopting the method of controlling variables. The result showed that when the content of nickel powder was 0~20% and that of nickel powder relative to that of polyurethane was 20%, the real and imaginary parts of the dielectric constant of the coating were the largest, and its polarising and loss ability with respect to electromagnetic waves were the strongest; when the content of nickel powder relative to that of polyurethane was 15%, the loss tangent value of the coating was the largest, and its absorption and attenuation ability with respect to electromagnetic waves was the strongest. When the values of the coating thickness were at 0.5~2 mm, the real and imaginary parts of the dielectric constant of the coating with a thickness of 1 mm were the largest, and the polarising and loss ability with respect to electromagnetic waves were the strongest. When the loss tangent value and the shielding-attenuation value of the coating with a thickness of 2 mm were the largest, the absorbing-attenuation and shielding-attenuation ability with respect to electromagnetic waves were the strongest.
W pracy wykonano jednowarstwowy kompozyt powlekany z poliuretanu PU2540 jako matrycy i proszku niklowego jako cząstki funkcjonalnej pochłaniającej fale. Przyjmując metodę regulacji zmiennych zbadano wpływ zawartości proszku niklowego na właściwości dielektryczne (części rzeczywiste i urojone oraz wartość stycznej strat) i skuteczność ekranowania oraz właściwości mechaniczne. Wyniki pokazały, że w przypadku zawartości proszku niklu w stosunku do zawartości poliuretanu wynoszącej 20%, rzeczywiste i urojone części stałej dielektrycznej powłoki były największe, a jej polaryzacja w odniesieniu do fal elektromagnetycznych była najsilniejsza. Gdy zawartość proszku niklu w stosunku do poliuretanu wynosiła 15%, wartość stycznej straty powłoki była największa, a jej zdolność pochłaniania i tłumienia fal elektromagnetycznych była największa. Gdy wartości grubości powłoki wynosiły 0,5~2 mm, rzeczywiste i urojone części stałej dielektrycznej powłoki o grubości 1 mm były największe, a polaryzacja w odniesieniu do fal elektromagnetycznych była najsilniejsza. Gdy wartość styczna strat i wartość tłumienia ekranowania powłoki o grubości 2 mm były największe, to zdolność tłumienia absorpcji i tłumienia ekranowania fal elektromagnetycznych była najsilniejsza.
Czasopismo
Rocznik
Strony
89--97
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
- Loftex China Ltd., Binzhou 256600, China
- Tianjin Municipal Key Laboratory of Advanced Fibre and Energy Storage, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites of Ministry of Education, Tianjin 300387, China
autor
- Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
autor
- Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
autor
- Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
autor
- Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
autor
- Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
autor
- Tiangong University, School of Textile Science and Engineering, Tianjin 300387, China
- Tianjin Municipal Key Laboratory of Advanced Fibre and Energy Storage, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites of Ministry of Education, Tianjin 300387, China
Bibliografia
- 1. Liu YJ, Liu YC, Zhao XM. The Influence of Dopant on the Dielectric Properties of Flexible Polypyrrole Composites. Journal of the Textile Institute 2017; 108(7): 1280-1284.
- 2. Hunt BJ. Maxwell, Measurement, and the Modes of Electromagnetic Theory. Historical Studies in the Natural Sciences 2015; 45: 303-309.
- 3. Gao H, Luo F, Wen QL, Hu Y, Qing YC. Temperature-Dependent Dielectric and Microwave Absorption Properties of Silicon Carbide Fiber-Reinforced Oxide Matrices Composite. Journal of Materials Science 2018; 53: 15465-15473.
- 4. Li JS, Hsu TC, Hwang CC, Lu KT, Yeh TF. Preparation and Characterization of Microwave Absorbing Composite Materials with Gss or Feco/GS Composites. Materials Research Bulletin 2018; 107: 218-224.
- 5. Liu YJ, Liu YC, Zhao XM. The Research of EM Wave Absorbing Properties of Ferrite/Silicon Carbide/Graphite Three-Layer Composite Coating Knitted Fabrics. Journal of the Textile Institute 2016; 107, 483-492.
- 6. Zhang YF, Liu J, Zhang YH, Liu J, Duan YP. Facile Synthesis of Hierarchical Nanocomposites of Aligned Polyaniline Nanorods on Reduced Graphene Oxide Nanosheets for Microwave Absorbing Materials. Rsc Advances 2017; 7: 54031-54038.
- 7. Liu YJ, Zhao XM. The Influence of Dopant Type and Dosage on the Dielectric Properties of Polyaniline/Nylon Composites. Journal of the Textile Institute 2017; 108(9): 1628-1633.
- 8. Liu YJ, Liu BC, Zhao XM. The Influence of the Type and Concentration of Oxidants on the Dielectric Constant of ohe Polypyrrole-Coated Plain Woven Cotton Fabric. Journal of the Textile Institute 2018; 109(9): 1127-1132.
- 9. Zhao B, Zhang X, Deng JS, Bai ZY, Liang LY, Li Y, Zhang R. A Novel Sponge-Like 2D Ni/Derivative Heterostructure to Strengthen Microwave Absorption Performance. Physical Chemistry Chemical Physics 2018; 20: 28623-28633.
- 10. Liu Y J, Liu YC, Zhao XM. The Influence of Pyrrole Concentration on the Dielectric Properties of Polypyrrole Composite Material. The Journal of The Textile Institute 2017; 108(7), 1246-1249.
- 11. Ozen MS, Sancak E, Soin N, Shah TH, Zarei A, Siores E. Unprecedented Electromagnetic Shielding Effectiveness of Lightweight Nonwoven Ag/PA66 Fabrics. Fibers and Polymers 2018; 19: 321-330.
- 12. Song WL, Fan LZ, Hou ZL, Zhang KL, Ma YB, Cao MS. A Wearable Microwave Absorption Cloth. Journal of Materials Chemistry C 2017; 5: 2432-2441.
- 13. Zhou YL, Muhammad J, Zhou TH, Wang DX, Wang X, Duan YP, Zhang ZD. Incorporation of Magnetic Component to Construct (Tic/Ni)@C Ternary Composite with Heterogeneous Interface for Enhanced Microwave Absorption. Journal of Alloys and Compounds 2019; 778, 779-786.
- 14. Zhang CH, Yang J, Liu Y, Li YF, Dai ZH, Han M, Bao J. Catalytic Hydrogenation of Nitrophenols by Cubic and Hexagonal Phase Unsupported Ni Nanocrystals. Chemistryselect 2019; 4: 42-48.
- 15. Wang L, Liu MC, Wang G, Dai B, Yu Feng, Zhang JL. An Ultralight NitrogenDoped Carbon Aerogel Anchored By NiNio Nanoparticles for Enhanced Microwave Adsorption Performance. Journal of Alloys and Compounds 2019; 776, 43-51.
- 16. Zhang YA, Zhang XM, Quan B, Ji GB, Liang XH, Liu W, Du YW. A Facile Self -Template Strategy For Synthesizing 1D Porous Ni@C Nanorods Towards Efficient Microwave Absorption. Nanotechnology 2017; 28, 115704.
- 17. Bai LY, Zhang HB, Jin HC, Yuan FL. Synthesis of Nickel Powders: from Spheres to Monodispersed Clusters. Journal of Cluster Science 2012; 23: 357-364.
- 18. Liu Y, Feng YR, Gong HY, Zhang YJ, Lin X, Xie BY, Mao JJ. Microwave Absorbing Performance of Polymer-Derived Sicn (Ni) Ceramics Prepared From Different Nickel Sources. Journal of Alloys and Compounds 2018; 749, 620-627.
- 19. Liu YJ, Liu YC, Zhao XM. The Research of EM Wave Absorbing Properties of Ferrite/Silicon Carbide Double Coated Polyester Woven Fabric. Journal of the Textile Institute 2018; 109, 106-112.
- 20. Liu Y, Zhao X. Experimental Studies on the Dielectric Behaviour of Polyester Woven Fabrics. FIBRES & TEXTILES in Eastern Europe 2016; 24, 3(117): 67-71. DOI: 10.5604/12303666.1196614
- 21. Liu YJ, Zhao XM, Tuo X. The research of EM wave absorbing properties of ferrite/silicon carbide/graphite three-layer composite coating knitted fabrics. Journal of the Textile Institute 2016; 107(4); 483-492.
- 22. Liu YJ, Zhao XM, Tuo X. Study of Graphite/Silicon Carbide Coating of Plain Woven Fabric for Electrical Megawatt Absorbing Properties. Journal of the Textile Institute 2017; 108(4): 483-488.
- 23. Liu YJ, Zhao XM, Tuo X. Preparation of Polypyrrole Coated Cotton Conductive Fabrics. Journal of the Textile Institute 2017; 108(5): 829-834.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ef4c7fc-27b1-4690-944d-7372833f2e34