PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Influence of Conditioning on Dynamic Behaviour of Polymer Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to determine the effect of environmental factors in the form of UV radiation and temperature on the amplitude-frequency behaviour of polymer composites (prepregs) based on a framework of thermosetting epoxy resin reinforced with high-strength R-glass fibres. Two series of composites with different fibre arrangements were prepared. The series had fibres arranged at angles of 30°, 45°, and 60°, at symmetric and asymmetric orientations in relation to the central layer. The composites were subjected to conditioning which simulated a six-month period of use in the spring and summer in the temperate warm transitional climate of Central and Eastern Europe. An UV QUV/SPRAY/RP accelerated aging chamber manufactured by Q - Lab Corporation was used for this purpose, and UV-A 340 lamps were used to simulate daylight. In addition, varying loads caused by sudden temperature changes were simulated using the Thermal Shock Chamber T/60/V2 Weisstechnik. Conditioned samples were tested using a TIRAvib 50101 electromagnetic exciter in combination with an LMS Scadias III controller and Test.Lab software. The results of the tests, in the form of amplitude-frequency diagrams in resonance regions, indicated that certain changes occurred as a result of the conditioning, which is a new development in the area of material tests. The results shed light on the effects of environmental conditions on the stiffness characteristics of composites, causing dynamic nonlinearities when operating at resonant frequencies.
Słowa kluczowe
Twórcy
  • Department of Applied Mechanics, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Faculty of Aviation, Polish Air Force University, ul. Dywizjonu 303 no. 35, 08-521 Dęblin, Poland
  • MEtRICs Research Center, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
Bibliografia
  • 1. Kosicka, E.; Gola, A.; Pawlak, J. Application-based support of machine maintenance. IFAC PapersOn- Line, 2019; 52: 131-135. https://doi.org/10.1016/j. ifacol.2019.10.033
  • 2. Krzyzak, A.; Bemowski, G.; Szczepaniak, R.; Grzesik, N.; Gil, L. Evaluation of the Reliability of Composite Materials Used in Aviation, Safety and Reliability - Safe Societies in a Changing World, Proceedings of the 28th International EuropeanSafety and Reliability Conference “ESREL 2018”, Trondheim, 2018, 2093-2098.
  • 3. Sławski, S.; Szymiczek, M.; Kaczmarczyk, J.; Domin, J.; Świtoński, E. Low velocity impact response and tensile strength of epoxy composites with different reinforcing materials. Materials, 2020; 13(14), 3059. https://doi.org/10.3390/polym13040585
  • 4. Mucha, M.; Sterzyński, T.; Krzyzak, A. The effect of the heat treatment on the crosslinking of epoxy resin for aviation applica-tions. [Wpływ wygrzewania na sieciowanie żywicy epoksydowej przeznaczonej do zastosowań w lotnictwie]. Po-limery/Polymers, 2020; 65(11-12): 776-783. https://doi.org/10.14314/ polimery.2020.11.4
  • 5. Macha, E. Niezawodność maszyn. Wydaw. Politechniki Opolskiej, Opole, 2001.
  • 6. Krzyzak, A.; Kosicka, E.; Szczepaniak, R.; Szymczak, T.Evaluation of the properties of polimer composites with carbon nanotubes in the aspect of their abrasive wear. Journal of Achievements in Materials and Manufacturing Engineering, 95(1), 5-12. https://doi.org/10.5604/01.3001.0013.7619
  • 7. Mrówka, M.; Woźniak, A.; Prężyna, S.; Sławski, S. The influence of zinc waste filler on the tribological and mechanical prop-erties of silicone-based composites. Polymers, 2021; 13(4): 1–15, 585. https:// doi.org/10.3390/ma13143059
  • 8. Krzyzak, A.; Kosicka, E.; Borowiec, M.; Szczepaniak, R.: Selected Tribological Properties and Vibrations in the Base Resonance Zone of the Polymer Composite Used in the Aviation Industry. Maretials, 2020; 13: 1-12.
  • 9. Lee, W-J.; Wua, H.; Yun, H.; Kim, H.; Jun, M.B.G.; Sutherland, J.W. Predictive maintenance of machine tool system using AI techniques applied to machine condition data. Procedia CIRP, 2019; 80: 506-511. https://doi.org/10.1016/j.procir.2018.12.019
  • 10. Laloix, T.; Iung, B.; Voisin, A.; Romagne, E Parameter identification of health indicator aggregaion for decision-making in predictive maintenance: Application to machine tool. CIRP Annals - Manufacturing Technology, 2019; 68: 483-486. https:// doi.org/10.1016/j.cirp.2019.03.020
  • 11. Friedrich, K.; Almajid, A.A. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications. Appl Compos Mater, 2013; 20:107– 128. https://doi.org/10.1007/s10443-012-9258-7
  • 12. Shokrieh MM, Bayat A. Effects of Ultraviolet Radiation on Mechanical Properties of Glass/ Polyester Composites. Journal of Composite Materials. 2007; 41(20): 2443-2455. https://doi. org/10.1177/0021998307075441
  • 13. Javier C., Smith T., LeBlanc J., Shukla A., Effect of Prolonged Ultraviolet Radiation Exposure on the Blast Response of Fiber Reinforced Composite Plates. Journal of Materials Engineering and Performance, 2019; 28: 3174–3185.
  • 14. Joarder, A.; Price, A.; Mourshed, M. Systematic study of the therapeutic impact of daylight associated with clinical recovery. Loughborough University. Proceedings HaCIRIC PhD Workshop 2009. https://www.researchgate.net/ publication/48354598_Systematic_study_of_ the_therapeutic_impact_of_daylight_associated_ with_clinical_recovery#fullTextFileContent
  • 15. Latos, M.; Masek, A.; Zaborski, M. Fotodegradacja materiałów polimerowych. Przetwórstwo Tworzyw, 2017; 4: 358-363.
  • 16. Sørensen, L.; Groven, A.S.; Hovsbakken, I.A.; Del Puerto, O.; Krause, D.F.; Sarno, A.; Booth, A.M. UV degradation of natural and synthetic microfibers causes fragmentation and release of polimer degradation products and chemical additives. Sci. Total Environ., 2021; 755: #143170. http://doi. org/10.1016/j.scitotenv.2020.143170
  • 17. Ching, Y.C.; Gunathilake, T.U.; Ching, K.Y.; Chuah, C.H.; Sandu, V.; Singh, R.; Liou, N.-S. Effects of high temperature and ultraviolet radiation on polymer composites, Elsevier Ltd, 2019. http://doi. org/10.1016/b978-0-08-102290-0.00018-0.
  • 18. Lu, T.; Solis-Ramos, E.; Yi, Y.; Kumosa, M. UV degradation model for polymers and polymer matrix composites, Polym. Degrad. Stabil. 2018; 154: 203–210, https://doi.org/10.1016/j. polymdegradstab.2018.06.004
  • 19. Komorek, A.; Przybylek, P.; Brzozowski, D. The influence of UV radiation upon the properties of fibre reinforced polymers. Solid State Phenom. 2015; 223: 27–34. https://doi.org/10.4028/www.scientific. net/SSP.223.27
  • 20. Ray, S.; Cooney, R. Thermal degradation of polimer and polymer composites (cap.7) Myer Kutz (Ed.), Handbook of Envi-ronmental Degradation of Materials (2nd ed.) 2013; 213-242.
  • 21. Komorek, A.; Komorek, Z.; Krzyzak, A.; Przybylek, P.; Szczepaniak, R. Impact of Frequency of Load Changes in Fatigue Tests on the Temperature of the Modified Polymer. International Journal of Thermophysics, 2017; 38(8): #128.
  • 22. Ochiai, S.; Kimura, S.; Tanaka, H.; Tanaka, M.; Hojo, M.; Morishitam, K. et al. Degradation of SiC/SiC composite due to expo-sure at high temperatures in vacuum in comparison with that in air. Compos Part A Appl Sci Manuf, 2004; 35: 33-40. https://doi.org/10.1016/j.compositesa.2003.09.006
  • 23. Matsunaga, K.; Ochiai, S.; Osamura, K.; Waku, Y.; Yamamura, T. Influence of heat-treatment on mechanical property of Si–Ti–C–O fiber-reinforced aluminum matrix composites. J Jpn Inst Metals, 1993; 57: 1035-1040.
  • 24. Anvari, A. Effect of Temperature on the Mechanical Properties of Carbon Composites. Journal of Engineering, vol. 2020, Article ID 8629471, 2020. https://doi.org/10.1155/2020/8629471
  • 25. Park, S.Y.; Choi, H.S.; Choi, W.J.; Kwon, H. Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber/epoxy composites for low earth orbit space applications. Compos B Eng, 2012; 43(2): 726-738, 10.1016/j.compositesb:2011.03.007
  • 26. Karadeniz, Z. H. A numerical study on the thermal expansion coefficients of fiber reinforced composite materials. Dokuz Eylul University, Izmir, Turkey, 2005, Thesis, Graduate School of Natural and Applied Sciences.
  • 27. Kosicka, E.; Borowiec, M.; Kowalczuk, M.; Krzyzak, A.; Szczepaniak, R.: Influence of the Selected Physical Modifier on the Dynamical Behavior of the Polymer Composites Used in the Aviation Industry, 2020; 13: 1–17.
  • 28. Bere, P., Nemes, O., Dudescu, C., Berce, P., Sabău, E.: Design and Analysis of Carbon/Epoxy Composite Tubular Parts. Ad-vanced Engineering Forum 2013; 8-9, 207-214. https://doi.org/10.4028/www. scientific.net/AEF.8-9.207.
  • 29. Ceclan, V.A., Bâlc, N., Grozav, S., Bere, P., Borzan, C.S.: Quality of the hydroformed tubular parts. Advanced Engineering Forum, 8-9, 215-224. doi:10.4028/www.scientific.net/AEF.8-9.215.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ef39a65-3a49-495b-8812-e571e60750c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.