PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trace elements and garnet formation in a distal skarn zone : a case study of the Rudnik deposit, Central Serbia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Rudnik Pb-Zn deposit is hosted in skarns and hornfels formed in the late Oligocene by contact metamorphism of limestones, sandstones and shales. Garnets, together with epidote, represent the main non-metallic minerals in the Rudnik skarn. In the distal skarn zone, the garnets are rare and their occurrence is related to the flow path of hydrothermal fluids. To constrain the hydrothermal and physicochemical conditions, in situ elemental SEM-WDS and LA-ICP-MS analyses, and fluid inclusion microthermometric measurements, were made. The Rudnik garnets from the distal skarn zone are predominantly of andradite-grossular composition (Adr39.3–88.9Grs2.9–53.9Alm0.5–10.0), with a small amount of spessartine. Generally, the Fe-rich garnets show a positive Eu anomaly with LREE enrichment and a HREE flat pattern, with homogenization temperatures and salinities of fluid inclusions ranging from 373 to 392°C and from 14.25 to 15.27% NaCl equivalent, respectively. The trace elements and microthermometric properties indicate that the garnets formed at moderately high temperatures, mildly acidic pH levels and increased oxygen fugacity.
Rocznik
Strony
art. no. 24
Opis fizyczny
Bibliogr. 43 poz., map., tab., wykr.
Twórcy
  • University of Belgrade, FacultyofMiningand Geology, Djušina7,11000Belgrade, Serbia
  • University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department for Catalysis and Chemical Engineeri ng, Njegoševa 12, 1000 Belgrade, Serbia
  • University of Belgrade, Faculty of Geography, Studentski trg 3, 11000 Belgrade, Serbia
Bibliografia
  • 1. Anđelković, M., 1973. Geology of Mesozoic vicinity of Belgrade (in Serbian). Annales Geologiques de la Peninsule Balkanique, 38: 1-136.
  • 2. Bau, M., 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93: 219-230. https://doi .org/10.1016/0009-2541 (91 )90115-8
  • 3. Bau, M., Dulski, P., 1996. Anthropogenic origin of positive gadolinium anomalies in river waters. Earth and Planetary Science Letters, 143: 245-255.https://doi.org/ 10.1016/0012-821X(96)00127-6
  • 4. Brković, T., 1980. Explanatory booklet for sheet Kragujevac (in Serbian with English summary). In: Basic Geological Map of Yugoslavia 1:100,000. Federal Geological Institute, Belgrade.
  • 5. Brković, T., Radovanović, Z., Pavlović, Z., Dimitrijević, M., 1980.Geological Map of Yugoslavia 1:100 000, sheet Kragujevac. Federal Geological Institute, Belgrade.
  • 6. Bodnar, R., 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57: 683-684. https://doi.org/10.1016/0016-7037(93)90378-A
  • 7. Carlson, W., Gale, J., Wright, K., 2014. Incorporation of Y and REEs in aluminosilicate garnet: energetics from atomistic simulation. American Mineralogist, 99: 1022-1034. https://doi.org/ 10.2138/am.2014.4720
  • 8. Ciobanu, L.C., Cook, I.N., 2004. Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania. Ore Geology Reviews, 24: 315-370. https://doi.org/10.1016/i.oregeorev.2003.04.002
  • 9. Cvetković, V., Šarić, K., Pécskay, Z., Gerdes, A., 2016. The Rudnik Mts. volcano-intrusive complex (central Serbia): an example of how magmatism controls metallogeny. Geologia Croatica, 69: 89-99. https://doi.org/10.4154/GC.2016.08
  • 10. Dimitrijević, M.N., Dimitrijević, M.D., 1987. The Turbiditic Basins of Serbia. Serbian Academy of Sciences and Arts Department of Natural and Mathematical Sciences, Belgrade.
  • 11. Dimitrijević, M.N., Dimitrijević, M.D., 2009. The Lower Cretaceous paraflysch of the Vardar zone: composition and fabric. Annales Geologiques de la Peninsule Balkanique, 70: 9-21.
  • 12. Driesner, T., Heinrich, A., 2007. The system H2O-NaCl. Part I: correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000°C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71: 4880-4901. https://doi.org/10.1016/i.gca.2006.01.033
  • 13. Einaudi, M.T., Meinert, L.D., Newbery, R.J., 1981. Skarn deposits. Economic geology, 75th Anniversary Volume: 317-391. https://doi.org/10.2113/gsecongeo.95.6.1183
  • 14. Filipović, I., Pavlovic, Z., Marković, B., Rodin, V., Marković, O., Gagić, N., Atin, B., Milićević, M., 1978. Geological Map of Yugoslavia 1:100 000, sheet Gornji Milanovac. Federal Geological Institute, Belgrade.
  • 15. Gaspar, M., Knaack, C., Meinert, D.L., Moretti, R., 2008. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochimica et Cosmochimica Acta, 72: 185-205. ittps://doi.org/10.1016/i.gca.2007.09.033
  • 16. Haas, J., Péró, C., 2004. Mesozoic evolution of the Tisza Megaunit. International Journal of Earth Sciences, 93: 297-313. http://doi.org/10.1007/s00531 -004-0384-9
  • 17. Jamtveit, B., Hervig, R.L., 1994. Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals. Science, 263: 505-508. https://doi.org/10.1126/science.263.5146.505
  • 18. Jamtveit, B., Wogelius, R., Fraser, D., 1993. Zonation patterns of skarn garnets: records of hydrothermal system evolution. Geology, 21: 113-116. https://doi.org/10.1130/0091-7613(1993)021<0113:ZP0SGR>2.3.C0;2
  • 19. Jamtveit, B., Ragnarsdottir, K.V., Wood, B.J., 1995. On the origin of zoned grossular-andradite garnets in hydrothermal systems. European Journal of Mineralogy, 7: 1399-1410. https://doi.org/10.1127/eim/7/6/1399
  • 20. Kostić, B., 2021. Contact metamorphism of Upper Cretaceous sedimentary rocks of Rudnik. Ph.D. Thesis, University of Belgrade, Faculty of Mining and Geology.
  • 21. Kostić, B., Srećković-Batoćanin, D., Filipov, P., Tancić, P., Sokol, K., 2021. Anisotropic grossular-andradite garnets: evidence of two stage skarn evolution from Rudnik, Central Serbia. Geologica Carpathica, 72: 17-25. https://doi.org/10.31577/GeolCarp.72.1.2
  • 22. Liang, P., Zhang, Y., Xie, Y., 2021. Chemical composition and genesis implication of garnet from the Laoshankou Fe-Cu-Au deposit, the northern margin of East Junggar, NW China. Minerals, 11: 334. https://doi.org/10.3390/min11030334
  • 23. McDonough, W.F., Sun, S., 1995. The composition of the Earth. Chemical Geology, 120: 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
  • 24. Nicolescu, S., Cornell, D., Sodervall, U., Odelius, H., 1998. Secondary ion mass spectrometry analysis of rare earth elements in grandite garnet and other skarn related silicates. European Journal of Mineralogy, 10: 251-259. https://doi.org/10.1127/eim/10/2/0251
  • 25. Pamić, J., Šparica, M., 1983. The age of the volcanic of Požeška Gora (Croatia, Yugoslavia). Radovi Jugoslovenske Akademije Znanosti i Umjetnosti, 404: 183-198.
  • 26. Park, C., Song, Y., Kang, I., Shim, J., Chung, D., Park, C., 2017. Metasomatic changes during periodic fluid flux recorded in grandite garnet from the Weondong W-skarn deposit, South Korea. Chemical Geology, 451: 135-153. https://doi.org/10.1016/i.chemgeo.2017.01.011
  • 27. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., Hergt, J., 2011. lolite: freeware for the visualization and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26: 2508-2512. https://doi.org/10.1039/c1ia10172b
  • 28. Pollok, K., Jamtveit, B., Putnis, A., 2001. Analytical transmission electron microscopy of osscillatory zoned grandite garnets. Contributions to Mineralogy and Petrology, 141: 358-366. https://doi.org/10.1007/s004100100248
  • 29. Prelević, D., Wehrheim, S., Reutter, M., Romer, R., Boev, B., Božović, M., Bogaard, P., Cvetković, V., Schmid, S., 2017. The Late Cretaceous Klepa basalts in Macedonia (FYROM) - Constrains on the final stage of Tethys closure in the Balkans. Terra Nova, 23: 145-153. https://doi.org/10.1111/ter.12264
  • 30. Schmid, M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M., Ustaszewski, K., 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geoscience, 101: 139-183. https://doi.org/10.1007/s00015-008-1247-3
  • 31. Sladić-Trifunović, M., Pantić, N., Mihajlović, Đ., 1989. The significance of clastic limestone in the section of Bela Reka-Resnik, for stratigraphic interpretation and reconstruction of the depositional environments of the Upper Jurassic-Lower Cretaceous deep-complexes in the vicinity of Belgrade. In: Proceedings SGD for 1987, 1988 and 1989.
  • 32. Smith, M., Henderson, P., Jeffries, T., Long, J., Williams, C., 2004. The rare earth elements and uranium in garnets from the Beinn an Dubhaich aureole, Skye, Scotland, UK: constraints on processes in a dynamic hydrothermal system. Journal of Petrology, 45: 457-484. https://doi.org/10.1093/petrology/egg087
  • 33. Somarin, A.K., 2004. Garnet composition as an indicator of Cu mineralization: evidence from skarn deposit of NW Iran. Journal of Geochemical Exploration, 81: 47-57. https://doi.org/10.1016/S0375-6742(03)00212-7
  • 34. Srećković-Batoćanin, D., Vasković, N., Milutinović, S., Ilić, V., Nikić, Z., 2014. Composition of zonal garnets from the garnetite exoskarn of the ore field Rogozna (Rogozna Mts, southern Serbia). Proceedings of the XVI Serbian Geological Congress. Donji Milanovac: 265-269.
  • 35. Stojanović, J., Radosavljević, S., Tošović, R., Pačevski, A., Radosavljević-Mihaljović, A., Kašić, V., Vuković, N., 2018. A review of the Pb-Zn-Cu-Ag-Bi-W polymetallic ore from the Rudnik orefield, Central Serbia. Annales Geologiques de la Peninsule Balkanique, 79: 47-69.
  • 36. Sverjensky, D.A., 1984. Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67: 70-78. https://doi.org/10.1016/0012-821X(84)90039-6
  • 37. Tančić, P., Vulić, P., Kaindl, R., Sartory, B., Dimitrijević, R., 2012. Macroscopically-zoned grandite from the garnetite skarn of Meka Presedla (Kopaonik Mountain, Serbia). Acta Geologica Sinica, 86: 393-406. https://doi.org/10.1111/i.1755-6724.2012.00668.x
  • 38. Tančić, P., Kremenović, A., Vulić, P., 2020. Structural dissymmetrization of optically anisotropic Grs64 ±iAdr36 ±iSps2 grandite from Meka Presedla (Kopaonik Mt., Serbia). Powder Diffraction, 35: 7-16. https://doi.org/10.1017/S0885715619000897
  • 39. Whitney, D., Evans, B., 2010. Abbreviations for names of rockforming minerals. American Mineralogist, 95: 185-187. https://doi.org/10.2138/am.2010.3371
  • 40. Xiao, X., Zhou, T., White, N., Zhang, L., Fan, Y., Wang, F., Chen, X., 2018. The formation and trace elements of garnet in the skarn zone from the Xinqiao Cu-S-Fe-Au deposit, Tongling ore district, Anhui Province, Eastern China. Lithos, 302-303: 467-479. https://doi.org/10.1016/j. lithos. 2018.01.023
  • 41. Yardley, D.W.B., Rochelle, A.C., Barnicoat, C.A., Lloyd, E.G., 1991. Oscillatory zoning in metamorphic minerals: an indicator of infiltration metasomatism. Mineralogical Magazine, 55: 357-365. https://doi.org/10.1180/MINMAG. 1991.055.380.06
  • 42. Zhai, D., Liu, J., Zhang, H., Wang, J., Su, L., Yang, X., Wu, S., 2014. Origin of oscillatory zoned garnets from the Xieertala Fe-Zn skarn deposit, northern China: in situ LA-ICP-MS evidence. Lithos, 190-191: 279-291. https://doi.org/10.1016/i.lithos.2013.12.017
  • 43. Zhang, Y., Qingquan, L., Yongjun, S., Hongbin, L., 2017. Fingerprinting the hydrothermal fluid characteristics from LA-ICP-MS trace element geochemistry of garnet in the Yongping Cu deposit, SE China. Minerals, 7: 199. https://doi.org/10.3390/min7100199
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5eed4a6b-dfc6-4933-a0b7-b296936aa68b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.