
In-System Programming of Non-Volatile Memories
on Microprocessor-centric Boards

Anton Tsertov, Sergei Devadze, Artur Jutman, and Artjom Jasnetski

Abstract—With the continuous growth of capacity of non-
volatile memories (NVM) in-system programming (ISP) has
become the most time-consuming step in post-assembly phase of
board manufacturing. This paper presents a method to assess
ISP solutions for on-chip and on-board NVMs. The major
contribution of the approach is the formal basis for evaluation
of the state-of-the-art ISP solutions. The proposed comparison
pin-points the time losses, that can be eliminated by the use
of multiple page buffers. The technique has proven to achieve
exceptionally short programming time, which is close to the
operational speed limit of modern NVMs. The method is based
on the ubiquitous JTAG access bus which makes it applicable for
the most board manufacturing strategies despite a slow nature
of JTAG bus.

Index Terms—in-system programming, processor-centric
board, JTAG, non-volatile memory.

I. INTRODUCTION

THE widely adopted DfT structures defined in IEEE
1149.1 standard [1] and complemented in [2] are heav-

ily used for ISP and memory test, besides traditional post-
assembly tests (Boundary-Scan tests). Despite of ubiquitous
presence of boundary-scan (BS)[1] structures in modern elec-
tronic systems and components, the application of BS is
limited due to the low operation frequency. Typically BS
clock (TCK) frequency is in range from 1 MHz to 50 MHz,
whereas actual speed of data transfer is much lower because
of the overhead data (JTAG instructions and UUT protocol)
that accompanies each test pattern. Here and later the term BS
will be used to stress that IEEE 1149.1 structures are used in
isolation from the internal functionality of the chip. The term
JTAG denotes the test infrastructures defined in IEEE 1149.1
standard.

Traditionally, the ISP is considered to be the final phase
of BS test session and it is essential for the functional tests
[3]. The fundamental JTAG-based ISP solutions are proposed
in [4][5] and [6], that describe processor-controlled test and
processor-centric board test (PCBT). These methods are com-
mon in the use of functionality of microprocessor (uP) or
microcontroller (uC) to access peripheral components outside
the uP or uC at normal operational speed of the board. The
attractiveness of such uP-based board test solutions are very
high due to its non-intrusiveness into board or/and chip design.

A. Tsertov is with Tallinn University of Technology, Department
of Computer Engineering, Akadeemia 15a, 12618 Tallinn, Estonia
(anton.tsertov@ttu.ee).

S. Devadze, A. Jutman and A. Jasnetski are with Testonica Lab, Akadeemia
15a, 12618 Tallinn, Estonia (sergey@testonica.com, artur@testonica.com,
artjom@testonica.com).

Later in this paper, the formal characterization of ISP will
be given in the terms from JTAG and PCBT methodology.

The ISP of NVMs with the use of PCBT methodology has
proven to speed up the existing JTAG-based solutions [5], [7].
However, the size of the system firmware (program image)
that is stored to the NVMs is following the trend that is set by
continuously growing hardware functionality. Inevitably the
speed up in ISP time introduced by PCBT methodology is
not sufficient and the industry demands ISP solutions that will
run at the operational speed limit of contemporary and future
NVMs. State-of-the-art JTAG and UART-based solutions are
limited by the speed of the data transfer link. In this paper
we derive the technique that mitigates time-losses that are
common to most ISP approaches.

A. Problem statement and paper contribution

After the bare PCB is populated with components it needs
to be tested for manufacturing defects. Typically, the boundary
scan tests are used to screen out boards with static structural
defects. After the screening procedure the “healthy” boards
reside in the fixture for subsequent ISP and functional testing,
e.g. with the use boot-loader image. In most cases, it is
considered beneficial to program NVMs with the same tester
hardware that is used for verification and test of other com-
ponents on the printed circuit board assembly (PCBA) under
test. The PCBT methodology helps to reduce the programming
time of flash memory from hours, as in case with BS, to
minutes and even less. Nevertheless, the actual ISP time (in
case of PCBT) heavily depends on the architecture of the
debug interface of the uP, on the instruction set of the uP,
on the performance of the flash memory controller inside the
uP SoC and on the performance of the flash memory itself.
The latter is discussed in details in the last section of this
paper.

The PCBT-based ISP procedure of NVMs is formally char-
acterized in Section II. Section III studies the drawbacks of the
state-of-the-art ISP solution and proposes countermeasures to
solve the named issues. Section IV is denoted to the approach
that allows in most cases to perform in-system programming
of on-chip or on-board non-volatile memories at maximum
speed. Whereas, maximum speed means that the bottleneck is
not in the data transfer channel (JTAG), but in the capability
of the memory itself to program the supplied data faster. The
formal basis from Section II and III is used in the last section
to asses and compare the experimental results of different test-
cases (ISP of on-chip and on-board NVM).

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ��

�������	
 � �
�� �� �����
���
 �� ���������
������ � �����
�� �������� �� ! "��#����
� �� $��	������

II. IN-SYSTEM PROGRAMMING

The in-system programming is a process of loading data or
program image into memory. The memory can be either the
on-board non-volatile memory or the on-chip (e.g. embedded
NVM of the uP). The in-system key-word means that the mem-
ory resides inside the system while it is being programmed.

In general, the ISP of NVMs consists of the following steps:
1. Unlock - Unlock NVM for write operations
2. Erase - Do erase for the area to be programmed
3. Blank check - Check the erased area to be blank
4. Program - Program data to the NVM
5. Verify - Verify the programmed data

Traditional BS-based approach is capable to run all these
steps, in case the connections between NVM and the BS-
enabled device are controllable from the BS chain. The length
of the BS chain is often measured in thousands of bits in
modern systems, hence the useful data payload in BS-based
communication is extremely small, especially for memories
with serial interface. The next section shows how ISP can
benefit from the use of uP functionality instead of BS register
to speed up programing of NVMs.

A. Processor-centric Board Test

The processor-centric board test [6] is a collective term
for the post-manufacturing tests for processor-centric boards.
These tests target the defects related to the last stages of
the board manufacturing process and also the first period of
the post-manufacturing product life (e.g. in-system program-
ming (ISP), infant mortality diagnosis). The uP plays a role
of on-board tester, that listens to commands from external
test equipment and in response applies tests to other PCBA
components. The details on implementing ISP with the use of
PCBT methodology are described in the following paragraphs.

Test path initialization and configuration belong to the test
access functionality of the PCBT program. The rest of the
PCBT program functionality is a part of the test application,
which may be developed in accordance to online1 or offline
test application modes [8].

In case of the offline (autonomous) mode, the complete test
program (test vectors and expected values) is translated into
the set of uP instructions and loaded as an ordinary program
into embedded memory of the uP. The program execution on
the uP is started by the external tester. After test program
execution is finished the result (PASS or FAIL for complete
test) will be stored in the on-chip memory of the uP. It
is retrieved through the debug interface and reported to the
external tester for further evaluation and diagnosis.

The offline mode is fully independent and does not suppose
continuous interaction with an external tester. This mode needs
available on-chip memory to store test data. Obviously, this
mode is not suitable for ISP of large images unless there is
enough memory available (e.g. on-chip or on-board volatile
memory) to hold the whole image to be programmed into on-
board non-volatile memory.

1Online mode of test application is not the same as on-line testing

The key difference between the online and offline modes is
that in the online mode commands are executed under the
control of external tester. In online mode the flash image
is transferred through the test access path word by word
directly to the non-volatile on-board memory. This implies
also transferring the commands for NVM, which significantly
reduces the test data throughput of test application.

B. Calculation of ISP time

In this section the formal basis for ISP time estimation is
proposed. Each ISP step will be characterized in PCBT terms
with the respective formula.

1) Programming: The formula 1 is proposed for time
calculation for programming step(tISPP

) in case of online
mode of test application. It has summands for shifting in
data image, the uP instructions for writing data image and for
reading and shifting out the NVM status after buffer program
operation.

tISPP
= tWD + dtIW + tB

d

b
+ tIR

d

b
+

tRD

b
(1)

The first two summands in formula 1 is for writing data
to the pages and the last two summands are for checking the
result of page program operation.

• d - size in words of the flash image
• b - size in words of the flash page. Traditionally the data

in NVMs is handled page-wise.
• tWD - time to transfer over JTAG bus (shift in) the flash

image
tWD = d l

h , where l is a length of the shift and h is a
frequency of the test clock (TCK).

• tRD - time to transfer over JTAG bus (shift out) the flash
image
tRD = d l

h , where l is a length of the shift and h is a
frequency of the test clock (TCK). One can notice that
tRD and tWD are identical, hence, for simplification, in
the following discussions tWD is used instead of tRD.

• tIW - time to shift in the instructions that write a word
to any memory location
tIW =

∑k
i=1

li
h , where k is the number of shifts to

emulate the write instruction from external tester on the
uP. k includes the JTAG TAP instructions, debug port
instructions and uP instructions. li denotes that instruction
of every type might be different in length.

• tB - programming time, required by Flash device to
program one page
tB - is a constant specified in the datasheet of the memory

• tIR - same as tIW , but for read
tIR =

∑r
i=1

li
h where r is the number of shifts to

emulate the read instruction from external tester on the
uP. r includes the JTAG TAP instructions, debug port
instructions and uP instructions. li denotes that instruction
of every type might be different in length.

d
b means the number of pages to program (in case of

unaligned number of bytes the result is rounded up).

�� ������� �� ���� �� �!���
 ���"��

��" �� ��� ��	���	�
�
����� ��
������������� ������� #�����

2) Verify and Blank Check: The verification of the pro-
grammed data can be done in two ways. First way is to read
data from the NVM to external tester and verify it against
the programmed data externally. This is suitable for online
mode of PCBT. Second way is to read data from NVM to
on-board volatile memory (e.g. uP embedded RAM or on-
board RAM/DRAM) and let the uP to execute the comparison
routine. The last one is beneficial for offline mode.

The time for verification (tISPV
) of programmed data in

online mode is proposed to estimate with formula 2.

tISPV
= tRD + dtIR + tIR

d

b
+

tRD

b
(2)

The notations in formula 2 have the same meaning as in
formula 1. The first two summands stand for time that is
required to read the programmed data back to external tester.
While the last two summands show the time that is needed to
read the status of the NVM in order to check for errors that
may appear during the page read operation.

For Blank Check operation the content of NVM can be
checked either inside the uP or in external tester. The check
inside the uP requires additional software routine which is
not common for offline mode. In online mode the verification
routine can be used to verify the read data against blank value
(e.g. FFFFh).

3) Unlock and Erase: The Unlock and Erase operations
consist only from respective NVM command and an additional
commands to check the status register. In formula 3 (Unlock)
and 4 (Erase) commands are used for each page, this adds
redundant operations for memories that allow block-wise
(multi-page) unlock and erase operations. However, this allows
same formulas to be applicable for all NVM types and from
the functional perspective given redundancy does not cause
malfunctions.

tISPU
= (tIWu+ tIR + tUN)

d

b
(3)

• u - number of commands to unlock a page
• tUN - time required by NVM to unlock one page

tISPE
= (tIW c+ tIR + tER)

d

b
(4)

• c - number of commands to erase a page
• tER - time required by NVM to erase one page

III. HYBRID ONLINE ISP MODE

In order to speed up the ISP in online mode the industry has
came up with a solution [5], [9], which we call in the following
as hybrid-online mode of test application. In Figure 1 the uP-
based SoC components that are active in hybrid mode are
shown. The difference to pure online mode is in the software
that is executed by the uP. This software listens to the control
commands from external tester and is called monitor software.

A. Programming

Firstly, the external tester transfers part of the data image to
the buffer, then the command to copy data from buffer to buffer
inside NVM is send to the monitor software. The monitor
software handles the data transfer from the buffer to the page
buffer inside NVM by turn and sends write page commands
to NVM. If the on-chip memory is not available the on-board
volatile memory can be used to store the monitor software and
host the intermediate buffer for data. The NVM programming
time in hybrid-online mode is proposed to calculate with
formula 5.

tISPP
= tWM + tWD + (m+ d)tIW + tB

d

b
+ tEXP

d

b
(5)

• m - size in words of the monitor software
• tWM - time to shift in the monitor software

tWM = m l
h , where m is size of the monitor in words,

l is a length of a word and h is a frequency of the test
clock (TCK).

• tWD - time to shift in the flash image
tWD = d l

h , where l is a length of a word and h is a
frequency of the test clock (TCK).

• tIW - time to shift in instructions that write a word to
the register or location in volatile memory
tIW =

∑k
i=1

li
h , where k is the number of shifts to

emulate the write instruction from external tester on the
uP. k includes the JTAG TAP instructions, debug port
instructions and uP instructions. li denotes that instruction
of every type might be different in length.

• tB - programming time per page
tB - is a constant specified in the datasheet of the memory

• tEX - time taken by monitor to copy flash image from
buffer to page buffer into flash memory. As the monitor
is executed at the actual operating speed of the uP this
time can be neglected (proven in Section V). Typically
uP clock is at least one order of magnitude faster than
TCK.

After substituting the notation of summands in formula II
with the respective expressions, formula 5 takes the following
form:

tISP = m

(
l

h
+

k∑
i=1

li
h

)
+ d

(
l

h
+

k∑
i=1

li
h

)
+ tB

d

b
(6)

Obviously, in order to justify the effort spent on develop-
ment of the monitor software the hybrid-online mode has to
speed up the online mode. This consideration is expressed by
the following inequality 1>5:

d
l

h
+ dtIW + tB

d

b
+

d

b
tIR >m

l

h
+ d

l

h
+(m+ d)tIW + tB

d

b

that reduces to:

d

b
tIR > m

l

h
+mtIW (7)

Let us evaluate the obtained expression 7. From 7 it can
be concluded that the time to load the monitor to volatile

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� �$

Tester

PCBA

TAP

uP SoC NOR
FLASH

BS
Controller

Debug Port

R0
R1
R2
..

r15

uP Core

External Memory
Controller

TAP
Controller

SRAM

Embedded
Flash

MOV R1, R2
EXTS R1, #1

MOV R3, R5+
................

1.Data
Buffer

Fig. 1. Data path components in hybrid online mode of ISP

External tester Flash Page Buffer

tWM + m*tID

Buffer Memory

twd+ b*tID

tB

twd+ b*tID

tB

twd+ b*tID

tB

..

Programming
monitor

Programming
Image to Flash

Timeout

Page Buffer to Page

Fig. 2. Time flow in hybrid online mode of ISP

memory should be shorter than the time taken by reading the
flash status after the page programming operations. In other
words, the inequality 7 never holds if the monitor size in words
is bigger than the number of polls for flash status (assuming
that the read operation and write operation takes the same
number of shifts). Number of polls for flash status depends
on the number of flash pages to program, which has direct
relation to the size of the image to be programmed. Hence,
the programming operation in hybrid-online mode (in the form
it is described here) will likely to be slower than the online
mode for small images.

B. Verify

Standalone verification of programmed data in online mode
is performed inside the uP. Hence it requires transfer of
original data to the volatile memory. The time for data transfer
is reflected by the first two summands in equation 8. The tEXv

stands for time that monitor uses to read the data back from

flash pages and compare it against the original data. Normally,
the verification is done page-wise and the flow-graph is similar
to programming in Figure ??monitor-ISP. It is assumed that
the monitor program is loaded to uP program memory in the
previous steps.

tISPV
= tWD + dtIW + tEXV

d

b
(8)

The standalone verification is almost as much time costly
as a programming step itself. The verification of programmed
data can be joined with programming step. After the page
data is programmed to the NVM page the original image
data for that page still resides in the volatile memory. Thus,
page verification after page programming step saves time
for transferring data from external tester. Then the time for
verification consists only from tISPV

= tEXV
.

C. Unlock, Erase, Blank Check

In hybrid online mode the Unlock, Erase and Blank Check
are implemented inside the monitor software. The external
tester tells the monitor the start page, the number of pages and
the step to execute (unlock, erase or blank check). Altogether
it forms three command words to send to the monitor -
3(tIW + l

h)). The formulas 9, 10, 11 are proposed to calculate
time taken by unlock, erase and blank check steps of ISP in
hybrid online mode.

tISPU
= 3(tIW +

l

h
) +

d

b
(tEXUN

+ tUN) (9)

tISPE
= 3(tIW +

l

h
) +

d

b
(tEXER

+ tER) (10)

tISPBC
= 3(tIW +

l

h
) +

d

b
tEXBC

(11)

• tEXUN
, tEXER

, tEXBC
- time that monitor software uses

to execute the respective command
• tUN - time that NVM needs to unlock one page
• tER - time that NVM needs to erase one page

D. Summary

Let us join all ISP steps in one equation:

tISP = tWM + tWD + (m+ d)tIW + tB
d

b

+ tEXP

d

b
+ tEXV

d

b
+ 9(tIW +

l

h
)

+
d

b
(tEXER

+ tER + tEXUN
+ tUN + tEXBC

)

= tWM + tWD + (m+ d)tIW

+ 9(tIW +
l

h
) +

d

b
(tUN + tER + tB)

+
d

b
(tEXUN

+ tEXER
+ tEXBC

+ tEXP
+ tEXV

)

(12)

Assuming that normally number of words to program to
NVM is exceeding hundreds of thousands we may neglect
the time that is used to transfer commands for unlock, erase

�% ������� �� ���� �� �!���
 ���"��

��" �� ��� ��	���	�
�
����� ��
������������� ������� #�����

Tester

PCBA

TAP

uP SoC NOR
FLASH

BS
Controller

Debug Port

R0
R1
R2
..

r15

uP Core

External Memory
Controller

TAP
Controller

SRAM

Embedded
Flash

MOV R1, R2
EXTS R1, #1

MOV R3, R5+
................

1. Data
Buffer
2. Data
Buffer

Fig. 3. Data path components in double-buffer hybrid online mode of ISP

and blank check operations, as well as to neglect the monitor
execution time for all operations. The monitor execution time
is calculated in microseconds even for slow uP, while our
calculations in the following sections are in milliseconds.
Then, considering the simplification proposed here the formula
12 takes the following form:

tISP = tWM + tWD + (m+ d)tIW +
d

b
(tUN + tER + tB)

(13)

IV. DOUBLE BUFFER ONLINE ISP MODE

Despite the hybrid-online mode in general gives shorter
ISP time than in online mode, there is still a place for
optimizations. It should be stressed that in the ideal ISP
solution the bottleneck is in the time taken by the NVM itself
to program the page (tB). In figure 2 is shown the time flow
in hybrid-online mode of ISP. In other words, in ideal solution
ISP is as fast as the flash can allow. Hence, the timeout shown
in Figure 2 needs to be minimized. The time that is used to
program data from volatile buffer to page buffer inside flash
(”Buffer to Page Buffer) and time tB (Page Buffer to Page)
are inevitable in any case.

In order to catch up with the time of the ideal solution
let us consider adding another buffer to the hybrid-online
mode of ISP. The idea is to use the time that flash needs to
program the data in its page buffer to the actual page (tB) for
transferring data for the next page from external tester to the
buffer in volatile memory. The data flow for double-buffered
hybrid online method is shown in Figure 4. In this case the
programming of the flash page and the data transfer via test
access path are performed in parallel. The limitation of this
approach is that the volatile memory has to be big enough to
store the monitor and two pages (Buffer1 and Buffer2) of flash
image (see Figure 3).

The formula 14 is proposed to calculate the ISP time for the
double-buffer approach. The formula 14 is derived from 6 with

External tester Flash Page Buffer

twd + b*tID

Buffer1

twd+ b*tID tB

twd+ b*tID tB

tB

...

Programming
Image to Flash

Buffer2

tB
twd+ b*tID

Timeout
Page Buffer to Page

Buffer to Page Buffer

Fig. 4. Time flow in double-buffer hybrid online mode of ISP

assumption 15. In 15 is assumed that buffer programming time
is shorter than a flash page programming time (tB), which is
given in the datasheet. As it is shown later the assumption
15 holds in case of most on-chip and on-board flashes unless
the flash has extraordinary small page programming time. In
addition, formula 14 bounds the speed of communication with
external tester (h) from the lower side, when the equation is
satisfied.

(14)tISPP
= m

(
l

h
+

k∑
i=1

li
h

)
+ b

(
l

h
+

k∑
i=1

li
h

)
+ tB

d

b

b

(
l

h
+

k∑
i=1

li
h

)
≤ tB (15)

In formula 15 is shown that ISP time for programming
(tISPP

) is formed by the monitor programming to volatile
memory, transferring the first page to buffer inside volatile
memory (the rest of the pages are transferred in parallel
to the programming of the previous page to flash) and the
page programming time multiplied by the number of pages to
program.

The applicability of the double-buffer hybrid-online mode of
ISP in the particular test case can be evaluated using inequality
15. When the inequality is satisfied the overall ISP time is
limited by the flash performance, otherwise the double-buffer
based approach does not give a significant speed up and the
ISP is limited by the throughput of the test access path.

V. FROM THEORY TO PRACTICE

The efficiency of proposed methodology is studied for
two use-cases. The first use-case considers programming of
embedded (on-chip) flash of the uC. In the second use-case
the external (on-board) flash is programmed.

A. On-chip NVM

For the first use-case the uC XC2361E from Infineon [10] is
used. The embedded flash memory of XC2361E is built from
pages of size 128 bytes. The typical programming time for
single page is 3ms [10]. Thus, the theoretical programming
time of 256KB is 6144ms. The experimental results presented
in Table I show the difference in programming 256KB of data
into embedded non-volatile memory using toolchain from Keil
[11], PCBT approach and modified PCBT approach that is

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� �&

TABLE I
PROGRAMMING OF 256KB INTO INFINEON XC2300E UP ON-CHIP FLASH

Program Throughput
Method Time (s) in KB/s

Keil (UART)[11] 151,38 6,76

Keil (JTAG)[11] 14,72 17,12

PCBT [12] 12,43 20,27

PCBT (2-buff.) 7,81 32,25

Theoretical 6,144 35,714

based on the proposed double buffer technique. PCBT ap-
proaches are executed on the toolchain from Goepel Electronic
[12]. The results from Keil-based toolchain show the state-of-
the-art approach time. It should be mentioned that the actual
communication frequency is not available for that approach,
while for the PCBT the 20MHz test clock (TCK) frequency
was used.

The double buffer PCBT approach outperformed other ap-
proaches and showed the time close to the theoretical one. The
time for experiments listed in Table I include not only the ISP
time, but also the board and uP initialization time. Hence, the
difference between theoretical estimation and the double buffer
PCBT approach represents the time for initializing/booting
the board and uP and also the time for programming mon-
itor software and the first page into intermediate buffer:
7810 − 6144 = 1666(ms.). The pure programming time for
hybrid online PCBT is 12430 − 1666 = 10764(ms). Hence,
the time for transferring 256KB of data to intermediate buffer
is 10764 − 6144 = 4620(ms) and time to transfer 1 page to
that buffer is 4620/(2048 − 1) = 2.26(ms). This shows that
inequality 15 holds, whereas the left part is equal to 2.26ms.
and the tB = 3ms as was stated previously.

B. On-board NVM

For the second experiment the board with Emerald-P mi-
croprocessor and NOR flash from Numonix was selected.
Emerald-P is based on ARM Cortex-A9 core that is paired
with ADIv5 debug interface from ARM. The experimental
results for ISP of 1 MB image into on-board NOR flash and the
theoretical expectations both for hybrid online-hybrid PCBT
(ISPOH) and two-buffer online-hybrid PCBT (ISP2BOH)
approaches are shown in Table II. The theoretical result is
based on the data from respective Numonyx manual [13] for
selected NOR flash, where the programming time is defined
as a range (min < tB < max) for selected 512 byte long
page buffer. From Table II it is seen that the experimental
result for double buffer PCBT does not fit into the theoretical
range. Which may mislead us to the conclusion that for the
given case the bottleneck is in the throughput of test access
path, regardless the noticeable time improvement achieved in
PCBT conditioned by implementation of the second buffer.

To discover the actual bottleneck let us find out the ex-
act value of tB parameter and the experimentally achieved
throughput value.

In this experiment the size of the flash page and the buffer
size is 512 bytes. From data shown in Table II the overall
time to program one flash page in PCBT is tISPP−OH

=

(4434 − 100)/2048 = 2.12(ms), where 2048 is the number
of buffers in 1 MB. The same operation for the double buffer
PCBT takes: tISPP−2BOH

= (2930− 100)/2048 = 1.38(ms).
The difference between these two approaches conforms to
tISPP−OH

− tISPP−2BOH
= 4434 − 2930 = 1504(ms). The

same in the formal view:
tISPP−OH

− tISPP−2BOH

= d

(
l

h
+

k∑
i=1

li
h

)
+ tB

d

b
− b

(
l

h
+

k∑
i=1

li
h

)
− tB

d

b

= (d− b)

(
l

h
+

k∑
i=1

li
h

)

(16)

If

b

(
l

h
+

k∑
i=1

li
h

)
≤ tB

Otherwise:

(17)

tISPP−OH
− tISPP−2BOH

= d

(
l

h
+

k∑
i=1

li
h

)
+ tB

d

b
− d

(
l

h
+

k∑
i=1

li
h

)
− tB

= tB

(
d

b
− 1

)
In order to state whether inequality 15 holds or not it is

needed to calculate the exact tB value. Let us pessimistically
assume that inequality 15 does not hold, then from 17 tB =
1504/(d/b− 1) = 1504/2047 = 0.73(ms).

The experiments are executed using 20MHz clock for TCK
signal (h = 20000(ms)). Thus, the inequality 15 takes the
following form after substituting parameters with their values:

512

(
32

20000
+

k∑
i=1

li
h

)
≤ 0.73

after simplifying:

0.82 + 512
k∑

i=1

li
h
≤ 0.73

Which indeed leads to contradiction in inequality 15 and this
was an assumption we made in formula 17. Let us assume the
opposite (inequality 15 holds), then:

(d− b)

(
l

h
+

k∑
i=1

li
h

)
= 1504

(1048064)

(
32

20000
+

k∑
i=1

li
h

)
= 1504

1677 + 1048064
k∑

i=1

li
h

= 1504

The last statement is incorrect, because the left part is
greater than the right part. Hence, the first assumption that
inequality 15 does not hold is correct for this experiment and

'� ������� �� ���� �� �!���
 ���"��

��" �� ��� ��	���	�
�
����� ��
������������� ������� #�����

tB = 0.73(ms). Finally, time to program 1MB to the flash
equals 0.73 ∗ 2048 = 1495.04(ms), which conforms to the
range given in Table II.

The results in Table II and the computations show that
in case with a fast flash memory the ISP is limited by the
throughput of test access path. However, the addition of the
second buffer to the hybrid-online ISP mode even in case
of the fast memory allows to achieve significant speed up.
According to Figure 2 and 4 the possible improvement in ISP
time is limited. The range of possible improvement is from
0 to T1, where the upper limit is the time when flash is idle
in the hybrid-online mode (T1). The time when flash is idle
is called in this paper as timeout. The flash idle period in the
double buffer mode is denoted here as T2. It should be stressed
that the flash is not idle during the process of copying data
from buffer memory to the page buffer inside Flash. For the
rest of the paper the time taken by this process is defined as
C. In Figure 2 and 4 this time period is outlined as Buffer to
Page Buffer.

Time for programming one page of data from external tester
to the buffer memory (see Figure 2) equals to: tB + T1 + C.

The timeout in the hybrid online PCBT (T1) is caused solely
by the time needed to transfer next page data to the buffer
from external tester and this time is equal in both experiments
(ISP of on-board NOR Flash using hybrid online and double-
buffered hybrid online methods).

tB + b

(
l

h
+

k∑
i=1

li
h

)
+ C = 2.12(ms)

b

(
l

h
+

k∑
i=1

li
h

)
+ C = 1.38(ms)

Time for programming one page of data from external tester
to the buffer memory in double buffer approach (see Figure
4) equals to: tB + T2 + C = 2830/2048 = 1.38(ms), where:

tB + T2 = b

(
l

h
+

k∑
i=1

li
h

)

And T2 = 1.38 − tB − C = 0.65 − C(ms). In order to
calculate the C = 0.65 − T2 let us subtract time to program
one buffer into flash for these two approaches:

(tB + T1 + C)− (tB + T2 + C) = 2.12− 1.38 = 0.74

T1 = 0.74 + T2 = 0.74 + (0.65− C) = 1.39− C

After substituting T1 and T2 values to T1−T2 = 0.74(ms)
we get: (1.39− C)− (0.65− C) = 0.74 we get C = 0(ms).
This means that we can neglect C value in computations due
to much less magnitude of measurement (not ms, but ns). It is
obvious that ARM Cortex-A9 based uP is capable of copying
512 bytes of data from one memory to another in nanoseconds.

The next unresolved issue questions the possibility to over-
come the bottleneck in the face of test access path. From
inequality 15 it is seen that the only parameter that is not
fixed in any test case is the frequency of the TCK signal. In
presented experiments (Table II) the theoretical expectations

TABLE II
ISP TIME FOR ON-BOARD FLASH DEVICES

2-buff.
PCBT (ms) PCBT (ms)

Theoretical limit 768 - 2333 768 - 2333

Experimental data 4434 2930

Initialization 100 100

Fig. 5. ISP Time as a function of TCK frequency

are not reached with the TCK frequency fixed at 20 MHz.
Figure 5 presents the chart that depicts dependency of the
ISP programming time of one flash page on the TCK signal
frequency.

In Figure 5 in blue is shown the tB which is constant
for the given test case and the red curve is the test access
path throughput, which is a function of TCK signal frequency
(horizontal axis). In other words, Figure 5 is a representation
of inequality 15. At TCK frequency of 38 MHz the page
transfer time becomes equal to page program time (tB), thus
inequality 15 becomes satisfied. At higher frequency values
the test access path throughput is not a bottleneck any more
as the time is shorter than the tB . Thus, execution of ISP at
e.g. 40 MHz of TCK signal is excessive to achieve the shortest
possible time for the given test case. Hence, the ISP time will
hit the theoretically calculated limit at 38 MHz.

C. Feasibility study

In order to see the feasibility of the hybrid online ISP
solution improved by doubling the buffer we conducted exper-
iments with various Flash devices. The results are presented
in Table III. These devices are selected to study the influence
of different technologies (NAND and NOR), interfaces (serial
and parallel) and internal memory organisation (e.g. page size)
on the overall ISP time. To make the comparison fare the
test access path is similar, but not identical for all cases.
The test access path cannot be identical due to the different
implementation of memory controllers for NOR, SPI NOR and
NAND Flash devices. However, the rest of the test access path
includes uPs with identical debug ports and core architecture.
These experiments are executed on the uP that implement
ARMv7 [14] architecture (ARM Cortex-A9 cores) and ARM
ADIv5 [15] debug interface.

The experiment with NAND Flash is conducted on the
PCBA equipped with MT29T Micron [16] device and Zynq
uP from Xilinx [17]. As the representative of the serial NOR

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� '�

TABLE III
ISP TIME FOR VARIOUS ON-BOARD FLASH DEVICES

NOR [13] qspi NOR [18] NAND [16]
Page Size (B) 512 256 2048
tB 0,73 0,50 0,39
tB

† 1505 2050 200
tISPP−OH

† 4434 5022 3097
tISPP−2BOH

† 2930 2973 2897
† for 1 MB

Flash the device from Numonyx (N25Q128 [18]) is selected,
which is paired again with Zynq uP. For the NOR Flash the
data from previous experiment (see Table II) is reused.

Table III outlines the differences between various Flash
devices by comparing page sizes and page programming
time (tB). In the last two rows of Table III we present the
measurement results of running hybrid online (tISPP−OH

) and
improved hybrid online (tISPP−2BOH

) ISP solutions on the
physical boards using test equipment from Goepel Electronic
GMBH. In the following the measured values are used to
calculate the actual time for programming a page of data,
which is shown in the second row (tB). The computation
algorithm was explained in the previous example. The actual
tB is not given in the datasheets and it varies in accordance
to the number of factors (e.g. temperature, supply voltage).
However, it is essential in calculations of theoretically minimal
programming time under given conditions. This theoretical
time value is used to assess the test access path throughput
value of the ISP solution obtained in the same conditions.

Graphically the feasibility of ISP solution is presented in
Figure 6. Figure 6 shows the improvement in test access path
throughput that can be achieved by increasing the TCK signal
frequency. In the same figure is also plotted the programming
time of 1 MB data for various flash devices. When the
throughput curve crosses the tB line for 1MB it shows that the
memory itself becomes a bottleneck of ISP solution. The latter
shows that further increase of TCK frequency will not speed
up the ISP time for particular memory. However, this figure
also shows that for NAND memory the reasonable increase
in TCK frequency is incapable to sufficiently increase the test
access path throughput to reach the theoretical minimal ISP
time.

Fig. 6. Test access path throughput comparison with programming time of
various Flash devices

ET NVM uP

 tERs

tERs

tERs

tERs

tBs

tBs

tBs

tBs

Timeout

Erase sector

Blank check

Program
buffer to sector
Verify sector
Erase sector
Blank check
Program
buffer to sector
Verify sector

Buffer1 Buffer2

idle

idle

idle

idle

idle

idle

idle

Load
Buffer 1

Load
Buffer 2

Load
Buffer 1

Load
Buffer 2

Load
Buffer 1

...

...

...

Fig. 7. Flow of ISP processes in double buffered hybrid online technique

D. Double Buffered Hybrid Online ISP optimizations

The experimental results in Table III show that optimization
of programming step is inefficient for contemporary on-board
NVM, unless the uP and PCBA design allow sufficient TCK
signal frequency. Previous section studied the optimizations
for programming step alone. This section considers all of ISP
process steps together.

To set the goal for ISP performance we define the conditions
for the ideal ISP solution. In the ideal case the NVM has to
be busy through the whole ISP process. In other words the
timeouts in operation of NVM are inadmissible.

Conventionally the NVM is erased, then checked for being
blank, after that it is programmed and verified. In this flow
the NVM is in stand by while all the data is transferred from
external tester to uP and back even in case of double buffer
approach.

We propose to reorganize the conventional ISP process
flow as shown in Figure 7. The idea is to transfer data from
external tester to buffers while the NVM is busy with erase and
programming operations. The erase operation of NVM clears
the content block or sector, which is more than one page.
Typically, the sector erase time tERS

= ntER is equivalent
to the programming time for that sector tBS

= ntB , where
n is the number of pages in the sector. Thus, when the ISP
process is organized as shown in Figure 7 the external tester
has time tERS

+ tBS
= n(tER+ tB) to transfer data to buffer.

Obviously, the size of the buffers has to be equal to the size
of the sector to take advantage of the proposed ISP flow. Such
big buffers may not fit into on-chip memory, so the on-board
volatile memory is required, which is normally available in
modern systems.

Let us discuss the flow, that is shown in Figure 7 step by
step to construct the formula for ISP time calculation for the
proposed solution.

'� ������� �� ���� �� �!���
 ���"��

��" �� ��� ��	���	�
�
����� ��
������������� ������� #�����

• External Tester (ET) sends command to the monitor that
is running inside uP to erase the sector.

• While NVM is erasing the sector, the ET starts loading
the data to the buffer (Buffer 1).

• After the time tERS
ET pauses the data transfer and lets

the monitor software (MS) inside uP to do Blank Check
operation of the erased sector. ET is idle and listens to
MS to continue data transfer for the “first” sector.

• MS reports the blank check result, and in case the sector
is blank ET transfers the remaining data to the buffer.
Meanwhile, the NVM is waiting for the next commands
and data to program. This is theoretically the only place
in the flow when NVM is in timeout.

• ET tells MS that data transfer is finished. MS programs
the data page-wise to the NVM pages at operational speed
of uP and NVM. This process takes time denoted as tBS

.
• While the flash is busy with programming a page (tB),

the ET transfers data to the second buffer (Buffer 2) for
the next sector.

• After every tB the ET halts data transfer to the second
buffer and MS starts polling the NVM to check the
programing operation status. After the programming of
the last page in a sector is passed successfully, MS
starts verification of recently programmed data against
the original data that is still in the first buffer. Meanwhile,
ET is polling MS for the verification process status.

• After the successful verification step MS initiates the
erase operation of the next sector in NVM and reports
to ET the verification result.

• ET continues the data transfer to the second buffer. ET
may also start data transfer for the next (third) section
if the erase operation time of the second sector is not
expired.

• When tERS
expires ET halts the data transfer to allow

MS do blank check of the second sector. In case the sector
is blank MS starts page programming operation and ET
is idling, then for time tB ET resumes data transfer. That
is again followed by programming of the next page by
MS and transferring data for the following time tB until
the whole sector is programmed.

• Afterwards, MS verifies the programmed data against
data in second buffer and initiates erase of the third sector.
For the following time tERS

ET finishes data transfer to
the first buffer and starts loading data to the second buffer.

• ... and so on, until all data is programmed

According to the performance (tERS
and tBS

) of NVM
device in comparison to the test access path throughput the
formula for calculation of ISP process time can take three
different forms.

If inequality 18 (s - sector/block size in bytes) is satisfied,
then formula 19 is justified.

(18)s

(
l

h
+

k∑
i=1

li
h

)
≤ tERS

(19)tISP2BOH
= tWM +mtIW + tERS

d

s
+ tBS

d

s

Formula 19 shows that NVM performance is a bottleneck,
because programming the monitor software takes incompara-
bly less time than the sector erase or program operations.

Second form that formula for tISP2BOH
can take is ques-

tioned by inequality 20. When inequality 20 is satisfied the
overall ISP time is described by formula 21.

(20)s

(
l

h
+

k∑
i=1

li
h

)
≤ tERS

+ tBS

tISP2BOH
= tWM +mtIW +s

l

h
+stIW + tER(

d

s
−1)+ tBS

d

s
(21)

The example flow that is shown in Figure 7 reflects the
formula 21. Here ISP time consists not only from monitor
programming and the NVM operations, but it also takes into
account the data transfer for the first sector/block.

Third form of formula for ISP time calculation is shown in
formula 22. This form is considered when inequality 20 does
not hold. In other words, ISP of fast NVMs, when the ET and
uP is not capable of transferring data faster than NVM erases
and programs it, falls into this case.

(22)tISP2BOH
= tWM +mtIW + d

l

h
+ dtIW

E. Experimental results

In Table IV is presented the experimental data for full ISP
process of three different on-board NVMs. The second row in
this table shows the size of the sector/block of the respective
NVM device. The third and fourth rows are experimentally
measured data for erasing and programming sector/block. The
fifth row contains the time measured for transferring data
from ET to the buffer of size denoted by particular NVM
sector/block size. The time measured for online hybrid ISP
mode (tISPOH

) is shown in the sixth row. The proposed double
buffer ISP solution (tISP2BOH

) results are shown in the seventh
row. The last row contains calculated data for erasing and
programming 1 MB of data. This data is based on the typical
tER and tB values from NVM device manuals.

The data presented in Table IV for selected NOR [13] device
show that the proposed solution has reached the theoretical
time. The difference between tISP2BOH

and tTY PE+P
is

inevitable because time tTY PE+P
does not include the time for

verification and blank check operations. By substituting values
from Table IV into inequalities 18 and 20 we can conclude
that in case of the given memory [13] the first form of formula
for tISP2BOH

(formula 19) calculation should be used.
The results for qspi NOR [18] device are unexpectedly

good. The measured time is even shorter than the calculated
theoretical value, that is based on typical erase and program
time values specified in the manual [18]. The typical time
for various memory operations are specified in the manual for
certain conditions (e.g. temperature). Our experiments, eventu-
ally, are executed under different conditions, that caused better
performance of the particular memory. Similarly to previous
case, formula 19 is proposed to be used for calculation of
overall ISP time.

������������	
�����	 ��
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ''

TABLE IV
FULL ISP TIME* FOR VARIOUS ON-BOARD FLASH DEVICES

NOR [13] qspi NOR [18] NAND [16]
sector size 128KB 64KB 128KB
tERS

750 680 2
tBS

190 120 25
s l
h
+ stIW 350 177 350

tISPOH
† 10610 14390 3120

tISP2BOH
† 7610 12880 2940

tTY PE+P
† 7424 13166 169

† for 1 MB at 20 MHz of TCK signal frequency
*all time values are given in milliseconds

The ISP results (tISP2BOH
) for NAND [16] memory device

show that proposed optimization technique produce insuffi-
cient time improvement to compete with the performance of
the selected memory. According to the results presented in
Table IV for this NVM device the inequality 20 does not hold,
hence, ISP time estimation is proposed to perform with the
formula 22.

VI. CONCLUSION

The contribution of this paper is twofold. The first one
is the formal characterization of in-system programming of
non-volatile on-chip and on-board memories. This formal
basis allows to point out time losses in ISP solution and to
assess the efficiency of various ISP approaches. The second
contribution is the novel ISP technique that has proven to
hasten programming operation to the limit that is set by the
NVM performance. The proposed technique is an extension of
the hybrid-online ISP mode with the double buffer concept.
Even in case of exceptionally fast NVM device the proposed
technique is capable to guarantee the significant speed up in
comparison to the state-of-the-art solutions.

It is foreseen that the tendency of enlargement of the storage
capacity of NVMs continues, thus the significance of proposed
ISP technique is remarkable.

REFERENCES

[1] 1149.1-2001, IEEE Standard Test Access Port and Boundary-Scan
Architecture, Std., 2001.

[2] 1149.7-2009, IEEE Standard for Reduced-Pin and Enhanced-
Functionality Test Access Port and Boundary-Scan Architecture, Std.,
2010.

[3] P. Maxwell, I. Hartanto, and L. Bentz, “Comparing functional and
structural tests,” in Proc. of International Test Conference, Atlantic City,
NJ , USA, 2000, pp. 403 – 407.

[4] J. Webster, B. Fenton, D. Stringer, and B. Bennetts, “On the synergy
of boundary scan and emulation board test: a case study,” in Proc. of
Board Test Workshop, Charlotte, USA, 2003, p. 10.

[5] XJTAG. (2010) High speed programming of non-volatile memories
using the xjtag development system. White Paper. [Online]. Available:
http://www.xjtag.com/

[6] A. Tsertov, R. Ubar, A. Jutman, and S. Devadze, “Automatic soc level
test path synthesis based on partial functional models,” in Proc. of 20th
Asian Test Symposium (ATS), New Delhi, India, 2011, pp. 532 – 538.

[7] T. Wenzel and H. Ehrenberg. (2009) Combining boundary scan and
jtag emulation for advanced structural test and diagnostics. White
Paper. [Online]. Available: http://tmworld.resourcecenteronline.com

[8] S.Devadze, A.Jutman, A.Tsertov, M.Instenberg, and R.Ubar,
“Microprocessor-based system test using debug interface,” in Proc. of
26th IEEE NORCHIP Conference, Nov. 2008, pp. 98–101.

[9] T.Wenzel and H.Ehrenberg. (2009) Combining boundary scan and
JTAG emulation for advanced structural test and diagnostics: White
paper. [Online]. Available: http://tmworld.resourcecenteronline.com

[10] XC236xE Data Sheet, V1.2 2012-06, Infineon Technologies AG, 2012.

[11] Keil, Tools by ARM, and ARM Ltd. (2009) Getting started.
creating applications with uvision4. Manual. [Online]. Available:
http://www.keil.com/product/brochures/uv4.pdf

[12] Goepel Electronic Ltd. (2012) Jtag/boundary scan is
probably the most ingenious test process. Web Arti-
cle. [Online]. Available: http://www.goepel.com/en/jtag-boundary-
scan/boundary-scan-instruments.html

[13] M29EW Datasheet, 208045-10, Numonyx Axcell, 2010.
[14] ARM Limited. (2011) ARM Architecture Reference Manual - ARMv7-

A and ARMv7-R edition. ARM DDI 0406C, Manual.
[15] ——. (2006) ARM Debug Interface v5 Architecture Specification. ARM

IHI 0031A, Manual.
[16] Micron. (2010) M79M 2GB NAND Flash. MT29F2 Datasheet.
[17] Xilinx. (2012) Zynq-7000 EPP Technical Reference Manual. UG585

(v1.1).
[18] Numonyx Axcell. (2010) N25Q128 1.8V Datasheet. Rev 1.0.

Anton Tsertov received his M.Sc. and Ph.D. de-
grees in computer engineering from Tallinn Uni-
versity of Technology, Estonia in 2007 and 2012
respectively and currently holds the position of re-
searcher in Tallinn University of Technology. His
research interests include such topics as system
and board level test, high-level system modelling,
microprocessor functional and structural test.

Sergei Devadze has received his Ph.D. degree in
computer engineering from Tallinn University of
Technology, Estonia in 2009 and currently holds the
position of researcher in this university. His research
interests embrace such topics as usage of chip-
embedded instrumentation for system test and ISP,
fault tolerance and fault management architectures of
digital systems, extended structural board test. He is
a co-author of over 50 scientific papers in the field
of digital design and test published in international
journals and refereed conference proceedings.

Artur Jutman received his M.Sc. and Ph.D. degrees
in computer engineering from TU Tallinn, Estonia
in 1999 and 2004 respectively. His research inter-
ests include: embedded instrumentation for board
and system test, system modeling, DFT and self-
test (adding up to over 120 scientific publications).
Artur Jutman has been a visiting researcher and
invited lecturer in several European universities in
Germany, Sweden, Poland, and Portugal. Dr. Jutman
is a council member of the European Association for
Education in Electrical and Information Engineering

(EAEEIE) and a technology development center ELIKO. He is also a member
of the executive committee of the Nordic Test Forum (NTF) society. He is a
managing director of Testonica Lab company, which main focus lies in the
field of system test instrumentation. Dr. Jutman has been actively involved in
numerous FP5, FP6, FP7 R&D projects serving as a coordinator in two of
them.

Artjom Jasnetski received his M.Sc.degree in com-
puter engineering from Tallinn University of Tech-
nology, Estonia in 2013 and currently he is Ph.D.
student at Tallinn University of Technology. His
research interests include such topics as SiP test,
digital system modelling, ISP and HW driver im-
plementation.

'� ������� �� ���� �� �!���
 ���"��

��" �� ��� ��	���	�
�
����� ��
������������� ������� #�����

