PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hexagonal Photonic Crystal Fiber Behaviour as a Chromatic Dispersion Compensator of a 40 Gbps Link

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the capabilities of chromatic dispersion compensation of a photonic crystal fiber with a hexagonal distribution of circular air holes was investigated. The vector finite element method with scattering boundary condition was used to analyze a set of configurations of the fiber in which the distance between air holes’ centers was modified. With this method it was possible to obtain the values of chromatic dispersion and confinement factor in the C fiber band. The best suited configurations were tested in a 160 km optical link with a bit rate of 40 Gbps. The performance was evaluated by measuring the bit error rate for a set of 20 channels with channel spacing of 100 GHz. T e simulation results showed that is possible to reach values of hromatic dispersion as low as −850 ps/nm⋅km, confinement losses close to 10⁻³ dB/km and good BER results in the order of 10⁻¹⁷ for a wavelength of 1550 nm.
Twórcy
  • Electronics and Telecommunications Department, Instituto Tecnológico Metropolitano, Medellín, Colombia
  • Physics School, Universidad Nacional, Medellín, Colombia
  • Electronics and Telecommunications Department, Instituto Tecnológico Metropolitano, Medellín, Colombia
  • Electronics and Telecommunications Department, Instituto Tecnológico Metropolitano, Medellín, Colombia
Bibliografia
  • [1] Govind P. Agrawal, Fiber-Optic Communication Systems, 3rd ed., John Wiley & Sons, New York (2002).
  • [2] M. Chen et al., “Chromatic dispersion and PMD monitoring and compensation techniques studies in optical communication systems with single channel speed 40Gbit/s and CSRZ format.,” Opt. Express 15(12), 7667–7676 (2007).
  • [3] D. McGhan et al., “Electronic dispersion compensation,” in 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference, p. 15 pp., IEEE (2006) [doi:10.1109/OFC.2006.215362].
  • [4] D. Rafique and A. D. Ellis, “Various Nonlinearity Mitigation Techniques Employing Optical and Electronic Approaches,” IEEE Photonics Technol. Lett. 23(23), 1838–1840 (2011) [doi:10.1109/LPT.2011.2170193].
  • [5] S. J. Savory et al., “Electronic compensation of chromatic dispersion using a digital coherent receiver,” Opt. Express 15(5), 2120, Optical Society of America (2007) [doi:10.1364/OE.15.002120].
  • [6] J. Zhao, M. E. McCarthy, and A. D. Ellis, “Electronic dispersion compensation using full optical-field reconstruction in 10Gbit/s OOK based systems,” Opt. Express 16(20), 15353, Optical Society of America (2008) [doi:10.1364/OE.16.015353].
  • [7] N. M. Litchinitser, B. J. Eggleton, and D. B. Patterson, “Fiber Bragg gratings for dispersion compensation in transmission: theoretical model and design criteria for nearly ideal pulse recompression,” J. Light. Technol. 15(8), 1303–1313 (1997) [doi:10.1109/50.618327].
  • [8] I. Riant et al., “Chirped fiber Bragg gratings for WDM chromatic dispersion compensation in multispan 10-Gb/s transmission,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1312–1324 (1999) [doi:10.1109/2944.806756].
  • [9] S. Spolitis and G. Ivanovs, “Extending the reach of DWDM-PON access network using chromatic dispersion compensation,” in 2011 IEEE Swedish Communication Technologies Workshop (Swe-CTW), pp. 29–33, IEEE (2011) [doi:10.1109/Swe-CTW.2011.6082484].
  • [10] N. Nozhat and N. Granpayeh, “Specialty fibers designed by photonic crystals,” Prog. Electromagn. Res. 99, 225–244, EMW Publishing (2009) [doi:10.2528/PIER09092309].
  • [11] T. Fujisawa et al., “Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation,” Opt. Express 14(2), 893, Optical Society of America (2006) [doi:10.1364/OPEX.14.000893].
  • [12] A. Huttunen and P. Törmä, “Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area,” Opt. Express 13(2), 627, Optical Society of America (2005) [doi:10.1364/OPEX.13.000627].
  • [13] N. Janrao and V. Janyani, “Dispersion compensation fiber using square hole PCF,” in 2011 International Conference on Communications and Signal Processing, pp. 436–438, IEEE (2011) [doi:10.1109/ICCSP.2011.5739354].
  • [14] M. Lucki, “Optimization of microstructured fiber for dispersion compensation purposes,” in 2011 13th International Conference on Transparent Optical Networks, pp. 1–4, IEEE (2011) [doi:10.1109/ICTON.2011.5971024].
  • [15] X. Zhao et al., “Photonic crystal fiber for dispersion compensation.,” Appl. Opt. 47(28), 5190–5196 (2008).
  • [16] M. A. Islam and M. S. Alam, “Design of a Polarization-Maintaining Equiangular Spiral Photonic Crystal Fiber for Residual Dispersion Compensation Over E+S+C+L+U Wavelength Bands,” IEEE Photonics Technol. Lett. 24(11), 930–932 (2012) [doi:10.1109/LPT.2012.2190981].
  • [17] J. C. Knight et al., “Photonic crystals as optical fibres – physics and applications,” Opt. Mater. (Amst). 11(2-3), 143–151 (1999) [doi:10.1016/S0925-3467(98)00040-8].
  • [18] A. Méndez et al., Specialty Optical Fibers Handbook, in Specialty Optical Fibers Handbook, Elsevier (2007) [doi:10.1016/B978-012369406-5/50012-6].
  • [19] T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961, Optical Society of America (1997) [doi:10.1364/OL.22.000961].
  • [20] A. Ortigosa-Blanch et al., “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325, Optical Society of America (2000) [doi:10.1364/OL.25.001325].
  • [21] K. Saitoh et al., “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11(8), 843, Optical Society of America (2003) [doi:10.1364/OE.11.000843].
  • [22] K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Light. Technol. 23(11), 3580–3590 (2005) [doi:10.1109/JLT.2005.855855].
  • [23] D. Chen, M.-L. Vincent Tse, and H.-Y. Tam, “Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes: birefringence and dispersion,” Prog. Electromagn. Res. 105, 193–212, EMW Publishing (2010) [doi:10.2528/PIER10042706].
  • [24] X. Li et al., “Design of a pentagonal photonic crystal fiber with high birefringence and large flattened negative dispersion,” Appl. Opt. 54(24), 7350, Optical Society of America (2015) [doi:10.1364/AO.54.007350].
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5edb8bc0-47ae-4bc0-ad6f-3aaf94d083a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.