Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
On 2 December 2020 10:54 UTC a shallow earthquake of MW (NOA) = 4.6 occurred near the village of Kallithea (to the east of Thiva), central Greece, which, despite its modest size, was locally damaging. Using InSAR and GNSS data, we mapped a permanent change on the ground surface, i.e., a subsidence of 7 cm. Our geodetic inversion modelling indicates that the rupture occurred on a WNW-ESE striking, SSW-dipping normal fault, with a dip-angle of ~ 54°. The maximum slip value was 0.35 m, which was reached at a depth of about 1100 m. The analysis of broadband seismological data also provided kinematic source parameters such as moment magnitude MW = 4.6 (± 0.1), rupture area 6.3 km2 and mean slip 0.16 m, which agree with the values obtained from the geodetic model. The effects of the earthquake were disproportionate to its moderate magnitude, probably due to its unusually shallow depth (slip centroid at 1.1 km) and the high efficiency of the earthquake (radiation efficiency q = 0.62). The geodetic data inversion also indicates that within the uncertainty limits of the technique, three scenarios are possible (a) the earthquake responsible for the mapped surface deformation may have occurred on a ~ 2-km long, blind normal fault different from the well-known active Kallithea normal fault or (b) could have occurred along a secondary fault that branches off the Kallithea fault or (c) it may have occurred along the Kallithea fault itself, but with its geometrical configuration could not be modelled with available data. We have also concluded that with a high dip-angle Kallithea Fault forward model it is not possible to fit the geodetic data. The rupture initiated at a very shallow depth (1.1 km) and it could not propagate deeper possibly because of a structural barrier down-dip. The 2020 event near Kallithea highlighted the structural complexity in this region of the Asopos Rift valley as the reactivation of the WNW-ESE structures indicates their significant role in strain accommodation and that they still represent a seismic hazard for this region.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1523--1541
Opis fizyczny
Bibliogr. 90 poz.
Twórcy
autor
- Department of Civil Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
autor
- National Research Council (CNR), Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA), Via Diocleziano 328, Naples, Italy
autor
- National Observatory of Athens, Institute of Geodynamics, Lofos Nymfon, Thission, 11810 Athens, Greece
autor
- National Research Council (CNR), Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA), Via Diocleziano 328, Naples, Italy
autor
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Osservatorio Vesuviano (OV), Via Diocleziano 328, Naples, Italy
autor
- Laboratoire de Géologie - UMR CNRS 8538, Ecole Normale Supérieure de Paris, PSL Research University, 24 Rue Lhomond, 75005 Paris, France
autor
- Department of Civil Engineering, Democritus University of Thrace, 67100 Xanthi, Greece
- National Observatory of Athens, Institute of Geodynamics, Lofos Nymfon, Thission, 11810 Athens, Greece
autor
- National Observatory of Athens, Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing (IAASARS), Vas. Pavlou and I. Metaxa, Penteli, 15 236 Athens, Greece
autor
- National Observatory of Athens, Institute of Geodynamics, Lofos Nymfon, Thission, 11810 Athens, Greece
Bibliografia
- 1. Ambraseys NN, Jackson JA (1990) Seismicity and associated strain of central Greece between 1890 and 1988. Geophys J Int 101(3):663-708
- 2. Andrews DJ (1976) Rupture propagation with finite stress in antiplane strain. J Geophys Res 81:3575-3582
- 3. Argyrakis P, Ganas A, Valkaniotis S et al (2020) Anthropogenically induced subsidence in Thessaly, central Greece: new evidence from GNSS data. Nat Hazards 102:179-200. https://doi.org/10. 1007/s11069-020-03917-w
- 4. Atzori S, Salvi S (2014) SAR data analysis in solid earth geophysics: from science to risk management. In: Holecz F, Pasquali P, Milisavljevic N, Closson D (eds) Land applications of radar remote sensing. Intech Open, London. https://doi.org/10.5772/ 57479
- 5. Atzori S, Manunta M, Fornaro G, Ganas A, Salvi S (2008) Postseis-mic displacement of the 1999 Athens earthquake retrieved by the differential interferometry by synthetic aperture radar time series. J Geophys Res-Solid Earth 113:B09309. https://doi.org/10.1029/ 2007JB005504
- 6. Atzori S, Hunstad I, Chini M, Salvi S, Tolomei C, Bignami C, Stra-mondo S, Trasatti E, Antonioli A, Boschi E (2009) Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy). Geophys Res Lett 36:L15305
- 7. Avallone A, Briole P, Agatza-Balodimou AM, Billiris H, Charade O, Mitsakaki C, Nercessian A et al (2004) Analysis of eleven years of deformation measured by GPS in the Corinth Rift Laboratory area. C R Geosci 336(4-5):301-311
- 8. Ben-Menahem A, Singh SJ (1981) Seismic waves and sources. Springer, New York
- 9. Boatwright J (1980) A spectral theory for circular seismic sources: simple estimates of source dimension, dynamic stress drop, and radiated seismic energy. Bull Seismol Soc Am 70:1-28
- 10. Boatwright J, Fletcher JB (1984) The partition of radiated energy between P and S waves. Bull Seismol Soc Am 74:361-376
- 11. Briole P, Rigo A, Lyon-Caen H et al (2000) Active deformation of the Corinth rift, Greece: results from repeated global positioning system surveys between 1990 and 1995. J Geophys Res 105(B11):25605-25625
- 12. Briole P, Ganas A, Elias P, Dimitrov D (2021) The GPS velocity field of the Aegean. New observations, contribution of the earthquakes, crustal blocks model. Geophys J Int. https://doi.org/ 10.1093/gji/ggab089
- 13. Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997-5009
- 14. Calderoni G, Di Giovambattista R, Pezzo G, Albano M, Atzori S, Tolomei C, Ventura G (2019) Seismic and geodetic evidences of a hydrothermal source in the Md 4.0 2017, Ischia earthquake (Italy). J Geophys Res Solid Earth 124:5014-5029. https://doi. org/10.1029/2018JB016431
- 15. Champenois J, Baize S, Vallee M, Jomard H, Alvarado A, Espin P, Ekstöm G, Audin L (2017) Evidences of surface rupture associated with a low-magnitude (Mw5.0) shallow earthquake in the Ecuadorian Andes. J Geophys Res Solid Earth 2017:122
- 16. Chen CW, Zebker HA (2002) Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models. IEEE Trans Geosci Remote Sens 40:1709-1719
- 17. Childs C, Nicol A, Walsh JJ, Watterson J (1996) Growth of vertically segmented normal faults. J Struct Geol 18(12):1389-1397. https://doi.org/10.1016/S0191-8141(96)00060-0
- 18. Chousianitis K, Ganas A, Gianniou M (2013) Kinematic interpretation of present-day crustal deformation in central Greece from continuous GPS measurements. J Geodyn 71:1-13
- 19. Clark DJ, Brennand S, Brenn G, Garthwaite MC, Dimech J, Allen TI, Standen S (2020) Surface deformation relating to the 2018 Lake Muir earthquake sequence, southwest Western Australia: new insight into stable continental region earthquakes. Solid Earth 11:691-717. https://doi.org/10.5194/se-11-691-2020
- 20. Clarke PJ, Davies RR, England PC et al (1998) Crustal strain in central Greece from repeated GPS measurements in the interval 19891997. Geophys J Int 135(1):195-214
- 21. Collier REL, Pantosti D, D’Addezio G, De Martini PM, Masana E, Sakellariou D (1998) Paleoseismicity of the 1981 Corinth earthquake fault: Seismic contribution to extensional strain in central Greece and implications for seismic hazard. J Geophys Res 103(B12):30001-30019. https://doi.org/10.1029/98JB02643
- 22. Colombelli S, Zollo A, Festa G et al (2014) Evidence for a difference in rupture initiation between small and large earthquakes. Nat Commun 5:3958. https://doi.org/10.1038/ncomms4958
- 23. Craig TJ, Gibbons SJ (2022) Resolving the location of small intracontinental earthquakes using Open Access seismic and geodetic data: lessons from the 2017 January 18 mb 4.3, Ténéré, Niger, earthquake. Geophys J Int 230(3):1775-1787. https://doi.org/10. 1093/gji/ggac144
- 24. D’Agostino N, Métois M, Koci R, Duni L, Kuka N, Ganas A, Georgiev I, Jouanne F, Kaludjerovic N, Kandić R (2020) Active crustal deformation and rotations in the southwestern Balkans from continuous GPS measurements. Earth Planet Sci Lett 539:116246. https://doi.org/10.1016/j.epsl.2020.116246
- 25. Dawson J, Cummins P, Tregoning P, Leonard M (2008) Shallow intraplate earthquakes in Western Australia observed by interferometric synthetic aperture radar. J Geophys Res Solid Earth 113(B11):B11408. https://doi.org/10.1029/2008JB005807
- 26. De Novellis V, Carlino S, Castaldo R, Tramelli A, De Luca C, Pino NA et al (2018) The 21 August 2017 Ischia (Italy) earthquake source model inferred from seismological, GPS, and DInSAR measurements. Geophys Res Lett 45(5):2193-2202
- 27. De Novellis V, Convertito V, Valkaniotis S et al (2020) Coincident locations of rupture nucleation during the 2019 Le Teil earthquake, France and maximum stress change from local cement quarrying. Commun Earth Environ 1:20. https://doi.org/10. 1038/s43247-020-00021-6
- 28. Deligiannakis G, Papanikolaou ID, Roberts G (2018) Fault specific GIS based seismic hazard maps for the Attica region, Greece. Geomorphology 306:264-282. https://doi.org/10.1016/j.geomo rph.2016.12.005
- 29. Elias P, Spingos I, Kaviris G, Karavias A, Gatsios T, Sakkas V, Par-charidis I (2021) Combined geodetic and seismological study of the December 2020 Mw = 4.6 Thiva (Central Greece) shallow earthquake. Appl Sci 11:5947. https://doi.org/10.3390/app11 135947
- 30. Fernández-Blanco D, de Gelder G, Lacassin R, Armijo R (2019) A new crustal fault formed the modern Corinth Rift. Earth Sci Rev 199:102919. https://doi.org/10.1016/j.earscirev.2019.102919
- 31. Figueiredo P, Hill J, Merschat A, Scheip C, Stewart K, Owen L, Wooten R, Carter M, Szymanski E, Horton S, Wegmann K, Bohnenstiehl D, Thompson G, Witt A, Cattanach B, Douglas T (2022) The Mw 5.1, 9 August 2020, Sparta earthquake, North Carolina: the first documented seismic surface rupture in the eastern United States. Geol Soc Am. https://doi.org/10.17615/z077-0z17
- 32. Ganas A, Papoulia I (2000) High-resolution, digital mapping of the seismic hazard within the Gulf of Evia Rift, Central Greece using normal fault segments as line sources. Nat Hazards 22(3):203-223
- 33. Ganas A, White К (1996) Neotectonic fault segments and footwall geomorphology in Eastern Central Greece from Landsat TM data. Geol Soc Greece Sp Pubi 6:169-175
- 34. Ganas A, Pavlides SB, Sboras S, Valkaniotis S, Papaioannou S, Alexandris AG, Plessa A, Papadopoulos GA (2004) Active fault geometry and kinematics in Parnitha Mountain, Attica. Greece J Struct Geol 26:2103-2118
- 35. Ganas A, Pavlides S, Karastathis V (2005) DEM-based morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates. Geomorphology 65:301-319
- 36. Ganas A, Bosy J, Petro L, Drakatos G, Kontny B, Stercz M, Melis NS, Cacon S, Kiratzi A (2007a) Monitoring active structures in eastern Corinth Gulf (Greece): the Kaparelli fault. Acta Geodynamica Et Geomaterialia 4(1):67-75
- 37. Ganas A, Spina V, Alexandropoulou N, Oikonomou A, Drakatos G (2007b) The Corini active fault in south-western Viotia region, central Greece: segmentation, stress analysis and extensional strain patterns. Bull Geol Soc Greece 40:297-308. https://doi. org/10.12681/bgsg.16561
- 38. Ganas A, Karastathis V, Moshou A, Valkaniotis S, Mouzakiotis E, Papathanassiou G (2014) Aftershock relocation and frequencysize distribution, stress inversion and seismotectonic setting of the 7 August 2013 M=5.4 earthquake in Kallidromon Mountain,
- 39. central Greece. Tectonophysics 617:101-113. https://doi.org/10. 1016/j.tecto.2014.01.022
- 40. Ganas A (1997) Fault segmentation and seismic hazard assessment in the Gulf of Evia Rift, central Greece. Unpublished Ph.D. thesis, University of Reading, November 1997. http://ethos.bl.uk/Order Details.do?uin=uk.bl.ethos.363718
- 41. Ganas A (2022) NOAFAULTS KMZ layer Version 4.0 (V4.0). Zenodo. https://doi.org/10.5281/zenodo.6326260
- 42. Georgiou Ch (2019) Multiparametric investigation of faults in Eastern Central Greece. Ph.D. thesis (in Greek), National Technical University of Athens
- 43. Gianniou M (2010) Tectonic deformations in Greece and the operation of HEPOS network. In: EUREF 2010 symposium, June 2-4, Sweden
- 44. Goldsworthy M, Jackson J (2001) Migration of activity within normal fault systems: examples from the Quaternary of mainland Greece. J Struct Geol 23(2-3):489-506
- 45. Goldsworthy M, Jackson J, Haines J (2002) The continuity of active fault systems in Greece. Geophys J Int 148(3):596-618
- 46. Grützner C et al (2016) New constraints on extensional tectonics and seismic hazard in northern Attica, Greece: the case of the Milesi Fault. Geophys J Int 204(1):180-199. https://doi.org/10.1093/gji/ ggv443
- 47. Guatteri M, Spudich P (2000) What can strong-motion data tell us about slip-weakening fault-friction laws? Bull Seismol Soc Am 90:98-116
- 48. Ide S, Beroza GC (2001) Does apparent stress vary with earthquake size? Geophys Res Lett 28:3349-3352
- 49. Iezzi F, Roberts G, Faure Walker J, Papanikolaou I, Ganas A et al (2021) Temporal and spatial earthquake clustering revealed through comparison of millennial strain-rates from 36Cl cosmogenic exposure dating and decadal GPS strain-rate. Sci Rep 11:23320. https://doi.org/10.1038/s41598-021-02131-3
- 50. Jackson JA, Gagnepain J et al (1982) Seismicity, normal faulting and the geomorphological development of the Gulf of Corinth (Greece): the Corinth earthquakes of February and March 1981. Earth Planet Sci Lett 57:377-397
- 51. Jolivet L, Brun JP (2010) Cenozoic geodynamic evolution of the Aegean region. Int J Earth Sci 99:109-138. https://doi.org/10. 1007/s00531-008-0366-4
- 52. Kapetanidis V, Kassaras I (2019) Contemporary crustal stress of the Greek region deduced from earthquake focal mechanisms. J Geodyn 123:55-82. https://doi.org/10.1016/j.jog.2018.11.004
- 53. Karastathis VK, Ganas A, Makris J, Papoulia J, Dafnis P, Gerolymatou E, Drakatos G (2007) The application of shallow seismic techniques in the study of active faults: the Atalanti normal fault, central Greece. J Appl Geophys 62(3):215-233
- 54. Kaviris G, Kapetanidis V, Spingos I, Sakellariou N, Karakonstantis A, Kouskouna V, Elias P, Karavias A, Sakkas V, Gatsios T, Kassaras I, Alexopoulos JD, Papadimitriou P, Voulgaris N, Parcha-ridis I (2022) Investigation of the Thiva 2020-2021 earthquake sequence using seismological data and space techniques. Appl Sci 12(5):2630. https://doi.org/10.3390/app12052630
- 55. King GCP, Ouyang ZX, Papadimitriou P et al (1985) The evolution of the Gulf of Corinth (Greece)—an aftershock study of the 1981 earthquakes. Geophys J R Astron Soc 80(3):677
- 56. Kokkalas S, Pavlides S, Koukouvelas I, Ganas A, Stamatopoulos L (2007) Paleoseismicity of the Kaparelli fault (eastern Corinth Gulf): evidence for earthquake recurrence and fault behaviour. Boll Soc Geol Ital 126(2):387-395
- 57. Kranis HD (1999) Neotectonic activity of fault zones in central-eastern Mainland Greece (Lokris). Ph.D. thesis. GAIA, 10, 2003, 234pp
- 58. Kyriakopoulos Ch, Chini M, Bignami Ch, Stramondo S, Ganas A, Kolligri M, Moshou A (2013) Monthly migration of a tectonic seismic swarm detected by DInSAR: southwest Peloponnese, Greece. Geophys J Int 194:1302-1309. https://doi.org/10.1093/ gji/ggt196
- 59. Lemeille F (1977) Études néotectoniques en Grece centrale nordorientale (Eubée centrale, Attique, Béotie, Locride) et dans les Sporades du Nord. These, Univ. Paris XI
- 60. Marinou A, Ganas A, Papazissi K, Paradissis D (2015) Strain patterns along the Kaparelli-Asopos rift (central Greece) from campaign GPS data. Ann Geophys 58(2):S0219
- 61. Mesimeri M, Pankow KL, Barnhart WD, Whidden KM, Hale JM (2021) Unusual seismic signals in the Sevier Desert, Utah possibly related to the Black Rock volcanic field. Geophys Res Lett 48:e2020GL090949. https://doi.org/10.1029/2020GL090949
- 62. NOA (2020) Moment tensor solution. https://bbnet.gein.noa.gr/gisola/ realtime/2020/noa2020xqwbq/2021-06-26T01:35:53.415841Z/ output/index.html
- 63. Ohnaka MA (2000) Physical scaling relation between the size of an earthquake and its nucleation zone size. Pure Appl Geophys 15:2259-2282
- 64. Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82:1018-1040
- 65. Palyvos N, Pantosti D, de Martini PM, Lemeille F, Sorel D et al (2005) The Aigion-Neos Erineos coastal normal fault system (western Corinth Gulf Rift, Greece): geomorphological signature, recent earthquake history, and evolution. J Geophys Res 110(B09302):1-15
- 66. Papanikolaou DJ, Mariolakos ID, Lekkas EL, Lozios SG (1988) Mor-photectonic observations on the Asopos Basin and the coastal zone of Oropos. Contribution to the neotectonics of Northern Attica. Bull Geol Soc Greece 20(1):251-267
- 67. Porras D, Carrasco J, Carrasco P, González PJ (2022) Imaging extensional fault systems using deep electrical resistivity tomography: a case study of the Baza fault, Betic Cordillera, Spain. J Appl Geophys 202:104673. https://doi.org/10.1016/j.jappgeo.2022.104673
- 68. Prieto GA, Thomson DJ, Vernon FL, Shearer PM, Parker RL (2007) Confidence intervals for earthquake source parameters. Geophys J Int 168(3):1227-1234. https://doi.org/10.1111/j.1365-246X. 2006.03257.x
- 69. Prieto GA, Parker RL, Vernon FL (2009) A Fortran 90 library for multitaper spectrum analysis. Comput Geosci 35:1701-1710. https:// doi.org/10.1016/j.cageo.2008.06.007
- 70. Pucci S et al (2016) Deep electrical resistivity tomography along the tectonically active Middle Aterno Valley (2009 L’Aquila earthquake area, central Italy). Geophys J Int 207(2):967-982. https:// doi.org/10.1093/gji/ggw308
- 71. Reilinger R et al (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111:B05411. https://doi.org/10.1029/2005JB004051
- 72. Ripperger J, Mai PM (2004) Fast computation of static stress changes on 2D faults from final slip distributions. Geophys Res Lett 31:L18610. https://doi.org/10.1029/2004GL020594
- 73. Ritz JF, Baize S, Ferry M et al (2020) Surface rupture and shallow fault reactivation during the 2019 Mw 4.9 Le Teil earthquake, France. Commun Earth Environ 1:10. https://doi.org/10.1038/ s43247-020-0012-z
- 74. Roberts GP, Ganas A (2000) Fault-slip directions in central and southern Greece measured from striated and corrugated fault planes: comparison with focal mechanism and geodetic data. J Geophys Res 105(B10):23443-23462
- 75. Roberts S, Jackson JA (1991) Active normal faulting in central Greece: an overview. In: Roberts AM, Yielding G, Freeman B (eds) The geometry of normal faults, vol 56. Special Publications Geological Society of London, London, pp 125-142
- 76. Roberts GP, Koukouvelas I (1996) Structural and seismological segmentation of the Gulf of Corinth fault system: implications for models of fault growth. Ann Geofis 39:3
- 77. Rondoyanni-Tsiambaou Th (1984) Etude néotectonique des rivages occidentaux du canal d’Atalanti (Grece centrale). These 3e cycle, 190 pp. Univ. Paris-Sud, Orsay, France
- 78. Sakellariou D, Lykousis V, Alexandri S, Kaberi H, Rousakis G, Nomikou P, Georgiou P, Ballas D (2007) Faulting, seismic-stratigraphic architecture and Late Quaternary evolution of the Gulf of Alkyonides Basin-East Gulf of Corinth, Central Greece. Basin Res 19:273-295. https://doi.org/10.1111/j.1365-2117.2007. 00322.x
- 79. Sboras S, Ganas A, Pavlides S (2010) Morphotectonic analysis of the neotectonic and active faults of Beotia (central Greece), using GIS techniques. Bull Geol Soc Greece 43(3):1607-1618. https://doi. org/10.12681/bgsg.11335
- 80. Sboras S, Ganas A, Pavlides S (2006) Tectonic geomorphology and active tectonics of the Asopos Rift valley, central Greece. In: 11th international symposium on natural and human induced hazards & 2nd workshop on earthquake prediction abstract volume, June 22-25, 2006, Patras, Greece, p 95
- 81. Stewart IS, Hancock PL (1990) Brecciation and fracturing within neotectonic normal fault zones in the Aegean region. In: Knipe RJ, Rutter EH (eds) Deformation mechanisms, rheology and tectonics, vol 54. Geological Society Special Publication, London, pp 105-110
- 82. Stewart IS, Hancock PL (1991) Scales of structural heterogeneity within neotectonic normal fault zones in the Aegean region. J Struct Geol 13:191-204. https://doi.org/10.1016/0191-8141(91) 90066-R
- 83. Tsodoulos IM, Koukouvelas IK, Pavlides S (2008) Tectonic geomorphology of the easternmost extension of the Gulf of Corinth (Beotia, Central Greece). Tectonophysics 453(1-4):211-232. https:// doi.org/10.1016/j.tecto.2007.06.015
- 84. Valkaniotis S, Ganas A (2020) Surface deformation observed in moderate Greek quake. Temblor. https://doi.org/10.32858/temblor.143
- 85. Walker RT, Claisse S, Telfer M, Nissen E, England P, Bryant CL, Bailey R (2010) Preliminary estimate of Holocene slip rate on active normal faults bounding the southern coast of the Gulf of Evia, central Greece. Geosphere 6(5):583-593
- 86. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974-1002
- 87. Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans AGU 94(45):409-410. https://doi.org/10.1002/2013EO450001
- 88. Wright TJ, Parsons BE, Lu Z (2004) Toward mapping surface deformation in three dimensions using InSAR. Geophys Res Lett 31:L01607. https://doi.org/10.1029/2003GL018827
- 89. Wyss M, Molnar P (1972) Efficiency, stress drop, apparent stress, effective stress, and frictional stress of Denver, Colorado, earthquakes. J Geophys Res 77(8):1433-1438. https://doi.org/10.1029/JB077 i008p01433
- 90. Zollo A, Orefice A, Convertito V (2014) Source parameter scaling and radiation efficiency of microearthquakes along the Irpinia fault zone in southern Apennines, Italy. J Geophys Res Solid Earth. https://doi.org/10.1002/2013JB010116.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5eda1c9b-287b-4fe7-86a1-d8be4ce8a687