PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surfactant assisted removal of engine oil from synthetic soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Effectiveness of surfactants SDS (sodium dodecyl sulfate), AOT (sodium dioctyl sulfosuccinate) and Brij 35 (polyoxyethylene lauryl ether) in removing residual oil from soils have been determined. Experimental results indicated that oil desorption efficiencies with surfactants are 7 to 18 times higher than using water alone. 0.6% Brij 35 at was the most effective surfactant to remove oil from soil, and it did not display any significant change in oil desorption with pH changes. A comparison study also showed that pore volume was a more significant parameter than soil washing flow rate to improve oil desorption.
Rocznik
Strony
67--79
Opis fizyczny
Bibliogr. 22 poz., tab., rys.
Twórcy
  • Building, Civil, and Environmental Engineering, Concordia University, Montreal, Canada
autor
  • Building, Civil, and Environmental Engineering, Concordia University, Montreal, Canada
autor
  • Building, Civil, and Environmental Engineering, Concordia University, Montreal, Canada
autor
  • Building, Civil, and Environmental Engineering, Concordia University, Montreal, Canada
Bibliografia
  • [1] SALLOU M.J., DUDAS M.J., MCGILL W.B., MURPHY S.M., Surfactant sorption to soil and geologic samples with varying mineralogical and chemical properties, Environ. Toxicol. Chem., 2000, 110 (10), 2436.
  • [2] SHIN M., BARRINGTON S.F., MARSHALL W.D., KIM J.W., Simultaneous soil Cd and PCB decontamination using a surfactant/ligand solution, J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng., 2004, 39 (11–12), 2783.
  • [3] DUFFIELD A.R., RAMAMURTHY A.S., CAMPANELLI J., Surfactant enhanced mobilization of mineral oil within porous media, Water Air Soil Pollut., 2003, 143, 111.
  • [4] YANG K., ZHU L., XING B., Enhanced soil washing of phenanthrene by mixed solutions of TX 100 and SDBS, Environ. Sci. Technol., 2006, 40 (13), 4274.
  • [5] ZHU K., HART W., YANG J., Remediation of petroleum-contaminated loess soil by surfactant- -enhanced flushing technique, J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng., 2005, 40 (10), 1877.
  • [6] LI X.J., Surfactant enhanced removal of petroleum products from a contaminated sandy soil, M.A.Sc. Thesis submitted to Concordia University, Montreal 2009.
  • [7] SHIN M., BARRINGTON S.F., MARSHALL W.D., KIM J.W., Complexation of a ligand with a surfactant micelle for soil heavy metal desorption, Chemosphere, 2005, 58 (6), 735.
  • [8] RAMAMURTHY A.S., VO D., LI X.J., QU J., Surfactant-enhanced removal of Cu(II) and Zn(II) from a contaminated sandy soil, Water Air Soil Pollut., 2008, 190 (1–4), 197.
  • [9] ALMEIDA C.M.R., DIAS A.C., MUCHA A.P., BORDALO A.A., Influence of surfactants on the Cu phytoremediation potential of a salt marsh plant, Chemosphere, 2009, 75 (2), 135.
  • [10] KHODADOUST A.P., REDDY K.R., MATURI K., Removal of nickel and phenanthrene from kaolin soil using different extractants, J. Environ. Eng. Sci., 2004, 21 (6), 692.
  • [11] KHODADOUST A.P., REDDY K.R., MATURI K., Effect of different extracting agents on metal and organic contaminant removal from a field soil, J. Hazard. Mater., 2005, 117 (1), 15.
  • [12] ZHANG W., LO I.M., Chemical-enhanced washing for remediation of soils contaminated with marine diesel fuel in the presence/absence of Pb, J. Environ. Eng., 2007, 133 (5), 548.
  • [13] RAMAMURTHY A.S., MEMARIAN R., Phytoremediation of mixed soil contaminants, Water Air Soil Pollut., 2012, 223 (2), 511.
  • [14] MALEFIC S.P., DALMATIA B.D., RONCEVIC S.D., AGBABA J.R., PEROVIC S.D.U., Impact of hydrocarbon type, concentration and weathering on its biodegradability in soil, J. Environ. Sci. Health, Part A Toxic/Hazard. Subst. Environ. Eng., 2011, 46 (10), 1042.
  • [15] BIANCHI V., MASCIANDARO G., CECCANTI B., DONI S., IANNELLI R., Phytoremediation and biophysical conditioning of dredged marine sediments for their re-use in the environment, Water Air Soil Pollut., 2010, 210 (1–4), 187.
  • [16] LO I.M.C., YANG X.Y., EDTA extraction of heavy metals from different soil fractions and synthetic soils, Water Air Soil Pollut., 1999, 109 (1–4), 219.
  • [17] KUPPA V., MANIAS E., Effect of cation exchange capacity on the structure and dynamics of polyethylene oxide in Li+ montmorillonite nanocomposites, J. Polym. Sci., Part B Polym. Phys., 2005, 43 (23), 3460.
  • [18] MANDAL A.K., PAL M.K., Strong fluorescence emissions by H-aggregates of the dye thiacyanine in the presence of the surfactant aerosol–OT, Chem. Phys., 2000, 253 (1), 113.
  • [19] SANCHEZ C.M., RODRIQUE C., SANCHEZ, M.M.J., Evolution of component characteristics of soil –surfactant–herbicide system that affect enhanced desorption of linuron and atrazine preadsorbed by soils, Environ. Sci. Technol., 2003, 37 (12), 2758.
  • [20] FU X., SHEN W., YAO T., Physical Chemistry, 4th Ed., Nanjing University Press, Nanjing 2001.
  • [21] LEE D.H., CODY R.D., HOYLE B.L., Laboratory evaluation of surfactants for ground water remediation and potential for recycling, Ground Water Monit. Rem., 2001, 21 (1), 49.
  • [22] DOONG R., LEI W.G., CHEN T.F., LEE C.Y., CHEN J.H., CHANG W.H., Effect of anionic and nonionic surfactants on sorption and micellar solubilization of monocyclic aromatic compounds, Water Sci. Tech., 1996, 34 (7), 327.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ed6265e-b32d-4a78-867a-82216cc83ec3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.