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Abstract

Adaptive (or actor) critics are a class of reinforcement learning algorithms. Generally, in
adaptive critics, one starts with randomized policies and gradually updates the probability
of selecting actions until a deterministic policy is obtained. Classically, these algorithms
have been studied for Markov decision processes under model-free updates. Algorithms
that build the model are often more stable and require less training in comparison to their
model-free counterparts. We propose a new model-building adaptive critic, which builds
the model during the learning, for a discounted-reward semi-Markov decision process
under some assumptions on the structure of the process. We illustrate the use of our
algorithm with numerical results on a system with 10 states and a real-world case-study
from management science.

1 Introduction

The science of reinforcement learning (RL)
or approximate dynamic programming (ADP) has
evolved from the Bellman equation [4] and the Pois-
son equation [25], through research in adaptive sys-
tems [47], to ADP/RL and simulation-based opti-
mization of MDPs [6, 41, 18, 39, 12, 35, 43].

The underlying goal in these problems is gen-
erally to solve the Markov decision process (MDP)
or some variant of it for a given objective function,
e.g., discounted reward, average reward, or total re-
ward, over a finite or infinite horizon.

A subset of these problems consider the sce-
nario that arises in discrete-event systems, where
the time between two successive events (when the
system state changes) is a non-zero, discrete vari-
able. Examples of this scenario include numer-
ous problems arising in robotics, many manage-
ment science problems, and problems in queue-
ing/communication networks. In this paper, we

are interested in problems arising in discrete-event
stochastic systems.

The work of Bellman and Howard has given
birth to the field of dynamic programming (DP),
which seeks to obtain the optimal value function
in solving the MDP. DP requires the values of the
transition probability matrices underlying the MDP.
The discipline of ADP/RL has emerged more re-
cently. Its landscape has been dominated by model-
free algorithms that seek to avoid the transition
probability matrices while updating the value func-
tion. A motivation for avoiding them is that they are
huge for large-scale problems, making their stor-
age and processing cumbersome. Further, ADP/RL
avoids these matrices via the stochastic approxima-
tion algorithm that it employs for updating the value
function.

Scattered in the ADP/RL literature one finds
algorithms that build the transition probability
model, either simultaneously with the stochastic-
approximation-based update of the value function,
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or separately first building the model using sample
experience and subsequently using DP in an offline
manner. The former class of algorithms are col-
lectively referred to as model-building algorithms
while those belonging to the latter class are known
as model-based algorithms. These algorithms have
some noteworthy advantages over their model-free
counterparts [49], the principle ones being: (i) they
are more stable and (ii) they require less train-
ing (sample experience). Of course, in contrast to
model-free algorithms, they have an additional step
of building a model, which involves certain compli-
cations that we will discuss below. But some recent
studies in engineering (cited below) point towards
the fact that exploiting the model may actually be
beneficial in some applications. Further, a review
of the literature indicates that interest in model-
based/model-building algorithms has been alive for
a long time in ADP/RL, despite the fact that they
involve an additional layer of building the model,
and continues to grow; see e.g., [45].

Contributions of this paper: Two major com-
plications arise in building the model directly and
then using it within the Bellman equation update
[2, 44]. First, estimating the transition probabil-
ities via maximum likelihood estimation may be-
come cumbersome for large problems. Second,
when the transition probability model is used within
the value function update, it requires an inner prod-
uct summation over the state space, which slows
down every update due to the intensity of the cal-
culations required in a large state space. In this pa-
per, we develop a model-building actor critic that
(i) avoids the cumbersome maximum likelihood es-
timation via storage of numerous counters and (ii)
does not require the computationally intensive in-
ner product summation over the entire state space.
This is the first contribution. The second contribu-
tion lies in that our algorithm is designed for a spe-
cific type of semi-Markov decision process (SMDP)
which a more general version of the MDP; i.e., our
algorithm can be used not only for MDPs, but also
in addition for a more general version of the MDP.
Finally, our third contribution is to study the com-
putational aspects of our algorithm in a real-world
case study from management science.

The rest of this article is organized as follows.
Section 2 provides a review of the relevant litera-
ture. Section 3 discusses the maximum likelihood

estimation of classical model-building. Section 4
presents details of our algorithm. Numerical results
are presented in Section 5. Conclusions and direc-
tions for future research are discussed in Section 6.

2 A Literature Review

In this section, we review literature on model
building and actor critics that is relevant to our
work.

2.1 Model-building/based RL

The papers of [2] (Real Time Dynamic Pro-
gramming) and [44] (H-Learning) can be regarded
as the pioneering works in model-building RL for
discrete-event systems. The main idea in these al-
gorithms is to use maximum likelihood estimation
via counters. These algorithms are based on esti-
mating the value function rather than the Q-function
of RL. Model-building Q-Learning algorithms have
been suggested in [21, 22, 18]. For systems where
the state can change continuously, i.e., the system
is not of a discrete-event type, and the state/action
space are continuous, a nice account has been pro-
vided in [17].

A subset of the literature [42, 33, 27, 10, 40,
16, 45], which is model-based rather than model-
building, seeks to approximate the model from sam-
ple experience (either in the real world or within a
simulator) and then use DP in an offline manner.
Representing the model and building it via maxi-
mum likelihood estimation using counters is usually
difficult for large-scale problems. One may gener-
ate approximate models on a reduced state-action
space that may be easier to handle, but their perfor-
mance is usually limited by the scale of the approx-
imation in the model [27].

And yet, many recent field tests of ADP/RL ap-
pear to exploit the model. Some of these tests are of
the model-based type. A case study of robotic soc-
cer in which model-based RL is used can be found
in Wiering et al. [49]. A more recent example is
from the study of controlling an unmanned heli-
copter [34, 1, 29]. It is known that with sufficient
training, pilots can prevent a helicopter from crash-
ing by performing an emergency procedure called
auto-rotation. The goal of these ADP/RL studies
was to develop an algorithm that can train a he-
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licopter to perform an auto-rotation, among other
maneuvers, on its own. The study of the human
brain is an important topic in neuro-science, and RL
models are being increasingly used to understand
how the brain functions. Recently, function mag-
netic imaging resonance (fMRI) studies in [50, 26]
have used model-based RL algorithms rather than
their model-free counterparts. Finally, a case study
of high-speed obstacle avoidance [32] also uses
model-based algorithms.

2.2 Adaptive critics

The model-free adaptive or actor critic is one
of the oldest algorithms in ADP/RL. It was first
proposed in Barto et al. [3] for discounted reward
MDPs. It predates the more popular Q-Learning al-
gorithm [46]. The convergence of the model-free
adaptive critic was proved under some conditions
in [28]. This algorithm was extended to SMDPs
in [30, 20]. Hernández and Fernandez [36] also
solve the problem considered in this paper via a
model-free adaptive critic algorithm that exploits a
discretization approach and uses the TD(λ) frame-
work. Finally, an interesting model-free adaptive
critic for hierarchical MDPs has been proposed in
[7] where the mechanism of discounting is unlike
ours.

3 Maximum Likelihood Estimation

In this section, we present a discussion of the
maximum likelihood estimation of the transition
probabilities underlying the model. The motivation
for this discussion is to expose the difficulties posed
by this estimation in RL. We will introduce some
notation first.

3.1 Notation

Let S denote the finite set of states, A(i) the fi-
nite set of actions permitted in state i, and d(i) the
action chosen in state i when policy d is pursued,
where ∪i∈S A(i) = A . Further let

r(., ., .) : S ×A ×S → ℜ

denote the one-step immediate reward and

p(., ., .) : S ×A ×S → [0,1]

denote the associated transition probability. A sta-
tionary deterministic policy x is an |S |-tuple that
will select action x(i) in state i.

3.2 Counters

One approach to maximum likelihood estima-
tion is to use counters and then use direct estima-
tion of means via averaging. The main idea for es-
timating the mean expected rewards and the transi-
tion probabilities with counters is as follows. One
initializes the two functions Ra(i) and Na(i) for
all i ∈ S and the function Wa(i, j) to 0 for every
a ∈ A(i) and all (i, j) pairs. Then the system is ei-
ther simulated or observed in the real world. When
the system is in state i, if action a is selected and the
next state is j, we perform the following update:

Na(i)← Na(i)+1 and Wa(i, j)←Wa(i, j)+1.

Further, the transition probabilities are updated as
follows:

p̃(i,a, l) =Wa(i, l)/Na(i)

for l = 1,2, . . . , |S |, where p̃(., ., .) denotes the max-
imum likelihood estimate of the transition proba-
bility. This step requires the storage of counters,
Na(.) and Wa(, .,), in addition to the updates de-
fined above. Classical model-building algorithms
[2, 44] have used the above approach for build-
ing the model. In order to update the value func-
tion, one must also estimate the immediate reward
model, which can be done as follows. Set Ra(i) = 0
for all i ∈ S at the start. When the transition from
i to j under the influence of a occurs, perform the
following updates:

Ra(i)← Ra(i)+ r(i,a, j) and r̃(i,a) =
Ra(i)
Na(i)

,

where r̃(i,a) denotes the maximum likelihood esti-
mate of the immediate reward earned in state i when
action a is selected and r(i,a, j) denotes the sample
immediate reward earned when action a is selected
in state i and the system transitions to j.

The above estimates of the transition probabil-
ity and the immediate reward allow us to use the
following update for the value function, J(i), of an
MDP:

J(i)← (1−η)J(i)+η×

max
a∈A(i)

[
r̃(i,a)+λ ∑

l∈S
p̃(i,a, l)J(l)

]
, (1)
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where η is the learning rate or the step size. A draw-
back of the above is that it requires an inner product
summation over S for every action, which is likely
to be time consuming for large-scale problems, in
addition to a maximization over the action space
A(i).

3.3 Robbins-Monro stochastic approxima-
tion

The Robbins-Monro algorithm [37] allows one
to bypass the storage of counters. For estimating
the immediate rewards, we can use the following
scheme based on the Robbins-Monro algorithm:

r̃(i,a)← (1−θ)r̃(i,a)+θr(i,a, j),

where θ is a learning rate that is gradually decayed
to 0. Clearly, scheme of this kind does not need
counters such as Ra(i) and Na(i). In the new algo-
rithm that we propose in the next section, we will
use the above mechanism to estimate the expected
immediate reward and thereby avoid the counters
Ra(.), and Na(.). We will also avoid storing the tran-
sition probabilities directly thereby bypassing the
counter Wa(., ., .); furthermore, not storing the tran-
sition probabilities directly will also allow us to per-
form the Bellman update without the inner produc-
tion summation and maximization over the action
space in Equation (1). Counters increase the stor-
age burden of the algorithm, while the inner product
summation makes every iteration of the algorithm
computationally intensive.

4 New Algorithm

This section presents some of the background
needed for our new algorithm and its detailed de-
scription. In subsection 4.1, we present a quick
overview of the SMDP that we study and its un-
derlying Bellman equation. Thereafter, in subsec-
tion 4.2, we present an adaptation of the classical
model-free adaptive critic for our SMDP. Finally in
subsection 4.3, we present a step-by-step descrip-
tion of our new algorithm.

4.1 SMDP

In an MDP, the time spent in each transition is
assumed to be 1 since it is the same for every tran-
sition. In an SMDP, however, the time is a part of

the model, and cannot be assumed to be 1 for ev-
ery transition. For instance in queueing problems,
in systems prone to failures, and in many wireless
communication problems, the transition times are
rarely the same. In case of discounted rewards,
the transition time also affects the value of the dis-
count factor and hence must be incorporate into the
model. We study the SMDP under two assumptions
that we state next.

Assumption 1 The transition reward is earned
in a lump sum at the start of the transition.

Assumption 2 The time spent in each transition
is a deterministic variable.

Assumption 1 avoids continuously awarded re-
wards by forcing the reward to be awarded only
once, while Assumption 2 provides that the time of
transition is not necessarily one but of fixed dura-
tion. Note, however, that Assumption 2 does not
imply that the time of transition is the same for ev-
ery transition. A more general model for the SMDP
would assume that the reward could be earned con-
tinuously during the transition and that the time of
transition could be a random variable. Here, in or-
der to keep our development tractable, we make
these simplifying assumptions. Both assumptions
hold for any MDP.

We now present some additional notation that
we will need. The expected immediate reward
earned in state i when action a is chosen in it can
be expressed as:

r̄(i,a) =
|S |

∑
j=1

p(i,a, j)r(i,a, j).

Also the time spent in each state is defined as fol-
lows:

t(., ., .) : S ×A ×S → ℜ

and denotes the time of one transition. The expected
transition time from state i when action a is chosen
in it can be expressed as:

t̄(i,a) =
|S |

∑
j=1

p(i,a, j)t(i,a, j).

For the SMDP, the discount factor is defined as e−γτ,
where γ is the rate of discounting and τ is the dura-
tion of time period over which one discounts (see
[5]). The goal in the SMDP here is to maximize the
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total discounted reward over an infinite time hori-
zon. To this end, one solves the Bellman equation
provided in the next result that follows directly from
Prop. 1.2.2 from Bertsekas [5, vol 2.].

Theorem 1 Under Assumptions 4.1 and 4.1, for all
i ∈ S , the optimal value function J∗ for the SMDP
satisfies: For all i ∈ S

J∗(i)= max
a∈A(i)

[
r̄(i,a)+ ∑

j∈S
p(i,a, j)e−γt(i,a, j)J∗( j)

]
.

(2)
Furthermore, J∗ is the unique solution of this equa-
tion.

Our algorithm must hence be designed to solve the
Bellman equation in (2).

4.2 A model-free version

In order to motivate our discussion of a model-
based adaptive critic for the SMDP, we present
an overview of the model-free adaptive critic for
MDPs and its model-free adaptation for the SMDP
at hand. The model-free version will then be mod-
ified to obtain a model-based algorithm for the
SMDP.

In an adaptive critic, one starts with a random-
ized policy in which the action a is selected in state
i using probability P(i,a). P(i,a) is defined using
the action-selection parameter β(i,a)as follows:

P(i,a) =
eβ(i,a)

∑b∈A(i) eβ(i,b) ∀a ∈ A(i). (3)

The algorithm updates β(i,a) in a manner such that
asymptotically one reaches an optimal determinis-
tic policy. The value function of the randomized
policy, J(.), is also updated along with β(, .,). The
main updates from the two timescale algorithm in
[28] is as follows. Actions are selected randomly
using the function P(, .,). When the transition from
i to j under action a occurs, perform the following
updates:

β(i,a)← β(i,a)+µ×
[
r(i,a, j)− J(i)+ e−γt(i,a, j)J( j)

]
; (4)

J(i)← J(i)+η×
[
r(i,a, j)− J(i)+ e−γt(i,a, j)J( j)

]
. (5)

In Equation (4), η is a learning rate different than µ;
in fact, η should decay to 0 faster than µ. Also, in
Equation (4), β(, .,) has to be artificially constrained
within [−β∗,β∗], since it can become unbounded
otherwise, where β∗ > 0 is a scalar small enough
such that eβ∗

can be stored in the computer with-
out overflow. The updating of β(, .,) will thus work
as follows. If β(i,a) < −β∗, set β(i,a) = −β∗; if
β(i,a) > β∗, set β(i,a) = β∗; otherwise, use Equa-
tion (4) for updating β(i,a).

4.3 Steps in the new algorithm

In order to develop a model-based version from
the model-free version presented above, we need to
define the function J′ as follows: J′(., .) : S ×A →
ℜ where

J′(i,a) = ∑
j∈S

p(i,a, j)J( j). (6)

Thus J′(i,a) can be viewed as the expected value
of J( j), the value function of the next state j, when
action a is selected. Our goal in the model-building
adaptation of the model-free version is to replace
the samples by estimates of the expected values.
Hence, r(i,a, j) will be replaced by r̃(i,a) and J( j)
by J′(i,a) when action a is chosen. Further, we need
to replace the sample t(i,a, j) by t̃(i,a). We thus ob-
tain the following updates from transforming those
in (4) and (5):

β(i,a)← β(i,a)+µ×
[
r̃(i,a)− J(i)+ e−γt̃(i,a)J′(i,a)

]
. (7)

J(i)← J(i)+η×[
r̃(i,a)− J(i)+ e−γt̃(i,a)J′(i,a)

]
. (8)

We note that β(, .,) will have to be bounded as in the
model-free case. Of course, we must in addition de-
velop a mechanism to estimate the functions r̃(, .,),
t̃(., .) and J′(, .,). These functions will be estimated
in the standard averaging process used in a stochas-
tic approximation algorithm. We will present the
details related to these functions in the step-by-step
description that follows.

We will use three different learning rates, η, µ,
and θ in the algorithm below. The learning rates
will change with the iteration number, k, as is stan-
dard in RL. We can denote the learning rate with the
enhanced notation, e.g., µk. However, we drop the
subscripts in our description to increase clarity. The
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learning rates must obey the following standard as-
sumptions needed for stochastic approximation [6]:

∑
k

ηk = ∞;∑
k

µk = ∞;∑
k

θk = ∞;

∑
k
(ηk)

2 < ∞;∑
k
(µk)

2 < ∞;∑
k
(θk)

2 < ∞.

In other words, the learning rates should sum up to
∞, while their squares should sum to a finite value.

Step 1. Initialize J′(i,a) = 0, β(i,a) = 0,
r̃(i,a) = 0 and t̃(i,a) = 0 for all (i,a) pairs and
initialize J(i)= 0 for every i∈ S . Set the number
of iterations k to 1. Set kmax to a suitable number.
Initialize β∗ to a largest positive value such that
can be eβ∗

can be stored in the computer without
overflow.

Step 2. Assume the system to be in state i.
Select action a with probability P(i,a), where
P(i,a) is computed using Equation (3). Simu-
late action a. Let the next state be j. Also, let
the immediate reward be r(i,a, j) and the transi-
tion time be t(i,a, j).

Step 3. Update β(i,a) as shown in Equation (7)
using using β∗ as the bound as discussed in Sec-
tion 4.2.

Step 4. Update J(i) as shown in Equation (8).

Step 5. Update r̃(i,a), t̃(i,a) and J′(i,a) as
shown below:

r̃(i,a)← r̃(i,a)+θ[r(i,a, j)− r̃(i,a)]; (9)

t̃(i,a)← t̃(i,a)+θ[t(i,a, j)− t̃(i,a)]. (10)

J′(i,a)← J′(i,a)+θ[J( j)− J′(i,a)]. (11)

Increment k by 1.

Step 6. If k < kmax, set i ← j, update η, µ, and
θ, and return to Step 2. Otherwise, if k = kmax,
stop learning and go to Step 7.

Step 7. Determine an optimal action, d(i), for
state i for every i ∈ S as follows:

d(i) ∈a∈A(i) P(i,a).

Then d will denote an optimal policy.

Note that our algorithm not only avoids the in-
ner product summation over S required in the max-
imum likelihood estimation but also avoids coun-
ters such as Ra(.), Ta(.), and Na(.). The immediate
reward and the immediate transition time are esti-
mated using the standard Robbins-Monro algorithm
of stochastic approximation via updates in Equa-
tions (9) and (10) respectively. We further note that
by setting t̃(i,a) to 1, we can use the above algo-
rithm for any MDP.

5 Numerical Results

In this section, we present results of the use of
our algorithm on some small-scale problems with
ten states and two actions (subsection 5.1) and a
real-world case study from management science re-
lated to total productive maintenance (subsection
5.2).

5.1 Small-scale problems

In this subsection, we study the behavior of our
new algorithm on a small-scale problem with 10
states and 2 actions in each state. Our goal is to
compare the performance of our new algorithm with
that of Q-Learning in terms of the quality of the so-
lution (policy) generated, and also the value func-
tion and elements of the model (immediate reward
and transition time).

We now define some notation needed to present
the inputs for the 10-state SMDPs. We will use Pz,
Rz and Tz to denote the transition probability ma-
trix, the transition reward matrix, and the transition
time matrix respectively for a stationary, determin-
istic policy z. We now define two policies, x and y,
as follows:

x = (1,1,1,1,1,1,1,1,1,1);

y = (2,2,2,2,2,2,2,2,2,2).

The matrices, P,R and T associated with x and y,
are defined in the Appendix. They will be the input
parameters for case 1, the first 10-state SMDP that
we studied. The input parameters for the other nine
cases are defined in Table 7. We used γ = 0.1 for all
the cases and β∗ = 15. The learning rates that we
used are:

µ =
1

100+5k
;η =

log(k+1)
k+1

;θ =
50

100+ k
.
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∑
k
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k
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k
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∑
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(ηk)

2 < ∞;∑
k
(µk)

2 < ∞;∑
k
(θk)

2 < ∞.
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In order to numerically show that our algorithm
finds the optimal policy and to benchmark its per-
formance against an existing algorithm, we also ran
Q-Learning for the SMDP under these assumptions
[9, 23]. The main transformation in the Q-Learning
algorithm for the SMDP we study would be as fol-
lows:

Q(i,a)← Q(i,a)+µ×

[
r(i,a, j)−Q(i,a)+ e−γt̃(i,a, j) max

b∈A( j)
Q( j,b)

]
.

Then, the value function obtained via Q-
Learning can be defined as follows: JQ(i) ≡
maxa∈A(i) Q(i,a). Table 1 shows the value function
from our new algorithm and that from Q-Learning
for Case 1. As is clear, our algorithm produces val-
ues very close to those from Q-Learning, which is
an encouraging finding. The relative performance
for all the other 9 cases is listed in Table 2, which
shows that in all these cases also our algorithm per-
forms extremely well. Table 3 compared the values
of the expected immediate rewards and expected
transition times estimated from our new algorithm
and their actual values for Case 1. The optimal
policies for all the cases are presented in Table 4;
our algorithm produced the optimal policy in every
case.

Table 1. Value function from new algorithm and
Q-Learning for case 1

i J(i) JQ(i)

1 8.001519 8.572999
2 13.515785 13.948835
3 12.146564 13.416791
4 16.337069 16.080918
5 13.460989 15.248618
6 20.349903 20.578502
7 21.953309 22.228289
8 11.055585 13.075585
9 8.395198 9.337231
10 −1.709660 −0.626395

Table 3. Results from all cases

Case ||J(i)− JQ(i)||∞
1 2.020000
2 1.800999
3 2.066055
4 0.970520
5 1.812913
6 2.107958
7 2.300655
8 1.822307
9 1.883836

10 1.813317

Table 4. Optimal policies for all cases.

Case Optimal policy
1 (2,1,2,1,1,2,2,2,2,2)
2 (2,1,2,1,1,2,2,2,2,2)
3 (2,1,2,1,1,2,2,2,2,2)
4 (2,1,2,1,1,2,1,2,2,1)
5 (2,1,2,1,1,2,1,2,2,1)
6 (2,2,2,1,1,2,2,2,2,2)
7 (2,1,1,1,1,2,2,2,2,2)
8 (2,1,2,1,2,2,2,2,2,2)
9 (2,1,2,1,1,2,2,2,2,2)
10 (2,1,2,1,1,2,2,2,2,1)

5.2 Management case study

An important program within production man-
agement is called Total Productive Maintenance
(TPM) (see [31] for a review). The overall goal of
this program is to preventively overhaul machines,
especially those that are critical for ensuring that
production rates meet desired targets, so as to mini-
mize the probability of unexpected machine failures
that can disrupt production. Typically, the proba-
bility of failure of a machine increases as it ages.
When a failure occurs, it usually occurs without
warning and almost invariably upsets production
schedules and the ability of the production manager
to meet deadlines if the machine is a bottleneck or
crucial for production. One option to reduce the
frequency of such failures is to preventively main-
tain the machine when it is functioning perfectly.
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Table 2. Values of expected immediate reward and transition times for case 1. Here d denotes the optimal
policy.

i d(i) t̄(i,d(i)) t̃(i,d(i)) r̄(i,d(i)) r̃(i,d(i))

1 2 42.84 42.04 6.88 6.82
2 1 32.64 33.92 9.64 9.58
3 2 27.53 27.42 9.27 9.17
4 1 27.06 26.64 11.19 11.13
5 1 16.33 16.22 9.97 9.89
6 2 34.92 34.65 18.42 18.53
7 2 39.74 39.29 19.91 20.39
8 2 24.04 24.27 9.60 8.89
9 2 40.91 41.15 7.46 7.68
10 2 38.54 38.83 −2.57 −2.37

In other words, a machine that is up and running is
shut down for a pre-specified time period, checked
for potential problems, such as lubrication or aging
bearings, and then allowed to get back into the pro-
duction mode. In general, the cost for maintenance
is much lower than that for repair, which can be at-
tributed to the fact that repairs lead to loss of pro-
duction in addition to the fact that they require addi-
tional time needed for troubleshooting the problem.

It has been known in the industry that a preven-
tive maintenance can significantly reduce the fre-
quency of repair-induced shutdowns, thereby re-
ducing variability in throughput time and inven-
tory in the system. However, determining the ex-
act time interval after which maintenance should
be performed has been a challenging problem for
many years. The difficulties in solving this prob-
lem arises from the fact that the underlying failure
mechanisms tend to be different for every system.

The problem of determining the optimal time of
maintenance are not limited to production systems.
Similar issues are encountered in operation of elec-
trical power systems (see e.g., [11, 13]) and critical
infrastructure such as roads and bridges (see e.g.,
[38]). Interestingly, the problems underlying main-
tenance optimization have been frequently modeled
as MDPs.

In this paper, we study a production line from
an industry in upstate New York where a repair or
maintenance activity typically shut down an entire
production line. Repairs were significantly costlier
than maintenance and also took longer since they

were caused by unscheduled breakdowns. The pro-
duction system consisted of numerous lines, but
each line had its own unique characteristics. When
it was determined that a line would be maintained,
all the machines in it were subjected to mainte-
nance. Similarly, when a machine failed in a line,
generally, the entire line was affected. Managers
were interested in minimizing the frequency of re-
pairs in the production lines in order to increase pro-
ductivity. The costs for repair and maintenance, as
well the time it took to perform the maintenance
and repair activities, were estimated. The time be-
tween successive failures was also recorded in order
to determine the distribution of the time between
failures. We note that we have altered some aspects
of this data set in order to protect the confidentiality
of the manufacturer.

We make some assumptions that are typical of
maintenance modeling. We assume that the state of
the system is defined by the number of production
cycles since the last repair or maintenance. With
such a definition of the state, it is possible to show
that the state dynamics follow a Markov chain. We
assume that the time between failures follows the
same distribution after every repair/maintenance,
i.e, the line is as good as new when it is repaired
or maintained. We also assume that the cost of re-
pair and maintenance are known with certainty. The
duration of each production cycle in the data we ob-
served had little variability and will was assumed to
be deterministic. The time for repair and the time
for maintenance was also approximately a multiple
(not necessarily integer) of the time needed for one
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In other words, a machine that is up and running is
shut down for a pre-specified time period, checked
for potential problems, such as lubrication or aging
bearings, and then allowed to get back into the pro-
duction mode. In general, the cost for maintenance
is much lower than that for repair, which can be at-
tributed to the fact that repairs lead to loss of pro-
duction in addition to the fact that they require addi-
tional time needed for troubleshooting the problem.
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quency of repair-induced shutdowns, thereby re-
ducing variability in throughput time and inven-
tory in the system. However, determining the ex-
act time interval after which maintenance should
be performed has been a challenging problem for
many years. The difficulties in solving this prob-
lem arises from the fact that the underlying failure
mechanisms tend to be different for every system.

The problem of determining the optimal time of
maintenance are not limited to production systems.
Similar issues are encountered in operation of elec-
trical power systems (see e.g., [11, 13]) and critical
infrastructure such as roads and bridges (see e.g.,
[38]). Interestingly, the problems underlying main-
tenance optimization have been frequently modeled
as MDPs.

In this paper, we study a production line from
an industry in upstate New York where a repair or
maintenance activity typically shut down an entire
production line. Repairs were significantly costlier
than maintenance and also took longer since they

were caused by unscheduled breakdowns. The pro-
duction system consisted of numerous lines, but
each line had its own unique characteristics. When
it was determined that a line would be maintained,
all the machines in it were subjected to mainte-
nance. Similarly, when a machine failed in a line,
generally, the entire line was affected. Managers
were interested in minimizing the frequency of re-
pairs in the production lines in order to increase pro-
ductivity. The costs for repair and maintenance, as
well the time it took to perform the maintenance
and repair activities, were estimated. The time be-
tween successive failures was also recorded in order
to determine the distribution of the time between
failures. We note that we have altered some aspects
of this data set in order to protect the confidentiality
of the manufacturer.

We make some assumptions that are typical of
maintenance modeling. We assume that the state of
the system is defined by the number of production
cycles since the last repair or maintenance. With
such a definition of the state, it is possible to show
that the state dynamics follow a Markov chain. We
assume that the time between failures follows the
same distribution after every repair/maintenance,
i.e, the line is as good as new when it is repaired
or maintained. We also assume that the cost of re-
pair and maintenance are known with certainty. The
duration of each production cycle in the data we ob-
served had little variability and will was assumed to
be deterministic. The time for repair and the time
for maintenance was also approximately a multiple
(not necessarily integer) of the time needed for one
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production cycle. We now introduce some notation
that we will need in order to present our case study:

Cr: Cost of one repair

Cm: Cost of one maintenance activity

tp: Duration of one production cycle

Mr: Coefficient for repair time

Mm: Coefficient for maintenance time

(n,λ): Parameters of an Erlang distribution used for
the time between successive failures

Some comments in regards to the notation
above are in order. We assume that when a line
is not in use it does not age. When it is main-
tained or repaired, its age is set to zero. The time
between successive failures is the age at which the
machine fails. It is typically a random failure with
increasing failure rates. We assumed the failure
time data to have an Erlang distribution, but note
that our data has been modified to protect the in-
terests of the source. We also note that our algo-
rithm should work for any distribution since it is
simulation-based. For the Erlang distribution, the
mean is n/λ and the variance is n/λ2. Also, the no-
tation for the repair and maintenance coefficients is
to be interpreted as follows. A repair is assumed
to end Mrtp time units after the production cycle
(during which failure occurs) starts, while a main-
tenance is assumed to end Mmtp time units after the
maintenance activity is initiated.

markov_chain.jpg

Figure 1. The Markov chain underlying the
maintenance case study. Note that p(i,a, j) denotes
the transition probability from i to j under a, and
a = 1 denotes production, while a = 2 denotes

maintenance.

Transition probability structure: The Markov
chain embedded in the semi-Markov process un-
derlying the problem has been depicted in Figure
1. We now explain the transition probabilities and
the (transition) reward and time structure. The state
of the system is defined by the number of produc-
tion cycles since last repair or maintenance. The
number inside a circle (the state in a Markov chain)
denotes the state. There are two actions, Produce
and Maintain, to choose from in each state. When
the action to produce is selected in state i, one ei-
ther goes to (i + 1) if the production is success-
fully completed or returns to state 0 if the machine
fails before the production is complete. The transi-
tion probability p(i,1,0) depends on the distribu-
tion of the time between failures and the state i.
The transition in this case involves the time spent
in the partial production and the repair of the ma-
chine. When the action to maintain is chosen in a
state, one returns to the state 0 with probability 1.
In this case, the transition involves the time spent in
maintaining the machine. Using the notation above,
we have that t(i,1, i+1) = tp, t(i,1,0) = Mrtp, and
t(i,2,0) = Mmtp.

Table 5 presents input data for some of the pa-
rameters needed for 10 different systems that we
studied. The units of tp and λ are hours and hour−1

respectively, while those of Cm and Cr are dollars.
The different cases were created using industrial
data, some of which has been modified [19]. Note
that the discount factor eγ ≈ 1/(1+R), where R is
the rate of interest per unit time.

Table 6. The optimal policy is the age in hours of
the production line when maintenance is

recommended.

Case Optimal Policy (hours)
1 60
2 70
3 72
4 120
5 60
6 70
7 80
8 40
9 50
10 70

.........0 1 2

p(1,1,2)p(0,1,1)

p(2,2,0)

p(1,2,0)

p(1,1,0)

p(2,1,0)

Production

Maintenance

Repair

p(0,1,0)

p(2,1,3)
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Table 5. Input parameters: λ = 0.1 and β∗ = 10 in all our experiments.

Case Cm Cr γ tp Mm Mr n
1 2 10 0.1 10 3 1.25 8
2 2 10 4×10−5 10 3 1.25 8
3 2 10 0.1 12 3 1.25 8
4 2 10 0.1 15 3 1.25 8
5 2 10 0.1 10 2.25 1.25 8
6 2 10 0.1 10 3 1.25 6
7 2 10 0.1 10 3 1.25 7
8 2 10 0.1 20 3 1.25 8
9 2 15 0.1 5 3 1.25 8

10 2 15 0.1 10 3 0.25 8

For case 2, we used an interest rate of 12 per-
cent per annum, assuming we have 3000 opera-
tional hours in one year. For the other 9 cases, we
used a value often used in the literature. For all our
experiments, we used learning rates defined in the
previous subsection. Table 6 shows the policy de-
termined by our new algorithm in terms of the age
at which it recommends maintenance. The policy
matches that produced by Q-Learning. Each case
was run for 106 hours of simulation time for learn-
ing, and it took less than 1 millisecond on an In-
tel Pentium Processor with a speed of 2.66 GHz on
a Red-Hat Linux operating system. Table 6 shows
that the optimal policy for preventive maintenance
varies from stopping the production every 40 hour
for PM to stopping it every 120. This range shows
the variability in production systems and the im-
portance of modeling such systems. If manage-
ment chooses a heuristic PM policy such as per-
forming maintenance every 70 hours based on say
the overall average rates, significant costs would be
incurred. Cases such as 1 and 2 will then incur ex-
tra costs from system breakdowns since the typical
time between failure is less the 80 hours chosen by
management. On the other hand, for the case with
a higher time between failures (such as case 3 and
4) the company will waste money maintaining the
production system more frequently than needed.

6 Conclusions

The problem of developing model-building RL
algorithms is a long-standing one. It has been
known for some time that the noise in the model-
free update can cause function approximation to be-

come unstable with neural networks [48]. Recently,
remarkable success has been observed on the heli-
copter domain using model-based approaches that
seek to build the model from sample experience
and thereafter use DP offline. However, model-
building algorithms have lagged behind primarily
due to the fact that storing the transition probabil-
ities using neural networks becomes cumbersome
for large-scale problems and performing an inner
product summation over the entire state space can
slow down the updating process. In this paper,
we seek to develop a model-building algorithm that
avoids the transition probabilities while using the
expectation rather than the sample within the main
Bellman update, thereby avoiding the computation-
ally intensive inner product summation. Also, our
algorithm is amenable to function approximation,
via for instance neural networks, since it does not
store the transition probabilities. To the best of our
knowledge, this is also the first algorithm that seeks
to use the adaptive critic in a model-building exer-
cise. Furthermore, we were able to extend the ap-
plicability of the algorithm from the MDP for which
adaptive critics have been studied for the most part
to an SMDP in which the transition time is deter-
ministic and the reward is earned as a lump sum at
the start of the transition.

We obtained very encouraging numerical re-
sults with our algorithm. It generated optimal so-
lutions in the 10-state SMDPs that we studied and
produced value functions remarkable close to those
of Q-Learning. We were also able to test the algo-
rithm on a real-world problem of maintenance op-
timization based on data gathered from an automo-
bile firm in New York state.



53A. Gosavi, S. Murray, J. Hu and S. Ghosh

Table 5. Input parameters: λ = 0.1 and β∗ = 10 in all our experiments.

Case Cm Cr γ tp Mm Mr n
1 2 10 0.1 10 3 1.25 8
2 2 10 4×10−5 10 3 1.25 8
3 2 10 0.1 12 3 1.25 8
4 2 10 0.1 15 3 1.25 8
5 2 10 0.1 10 2.25 1.25 8
6 2 10 0.1 10 3 1.25 6
7 2 10 0.1 10 3 1.25 7
8 2 10 0.1 20 3 1.25 8
9 2 15 0.1 5 3 1.25 8
10 2 15 0.1 10 3 0.25 8

For case 2, we used an interest rate of 12 per-
cent per annum, assuming we have 3000 opera-
tional hours in one year. For the other 9 cases, we
used a value often used in the literature. For all our
experiments, we used learning rates defined in the
previous subsection. Table 6 shows the policy de-
termined by our new algorithm in terms of the age
at which it recommends maintenance. The policy
matches that produced by Q-Learning. Each case
was run for 106 hours of simulation time for learn-
ing, and it took less than 1 millisecond on an In-
tel Pentium Processor with a speed of 2.66 GHz on
a Red-Hat Linux operating system. Table 6 shows
that the optimal policy for preventive maintenance
varies from stopping the production every 40 hour
for PM to stopping it every 120. This range shows
the variability in production systems and the im-
portance of modeling such systems. If manage-
ment chooses a heuristic PM policy such as per-
forming maintenance every 70 hours based on say
the overall average rates, significant costs would be
incurred. Cases such as 1 and 2 will then incur ex-
tra costs from system breakdowns since the typical
time between failure is less the 80 hours chosen by
management. On the other hand, for the case with
a higher time between failures (such as case 3 and
4) the company will waste money maintaining the
production system more frequently than needed.

6 Conclusions

The problem of developing model-building RL
algorithms is a long-standing one. It has been
known for some time that the noise in the model-
free update can cause function approximation to be-

come unstable with neural networks [48]. Recently,
remarkable success has been observed on the heli-
copter domain using model-based approaches that
seek to build the model from sample experience
and thereafter use DP offline. However, model-
building algorithms have lagged behind primarily
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slow down the updating process. In this paper,
we seek to develop a model-building algorithm that
avoids the transition probabilities while using the
expectation rather than the sample within the main
Bellman update, thereby avoiding the computation-
ally intensive inner product summation. Also, our
algorithm is amenable to function approximation,
via for instance neural networks, since it does not
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knowledge, this is also the first algorithm that seeks
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cise. Furthermore, we were able to extend the ap-
plicability of the algorithm from the MDP for which
adaptive critics have been studied for the most part
to an SMDP in which the transition time is deter-
ministic and the reward is earned as a lump sum at
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We obtained very encouraging numerical re-
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The algorithm statement without the support-
ing theory or the numerical results has appeared in
the conference proceedings of the IEEE symposium
series on computation intelligence (ADPRL) [24].
Future directions for this research will include

1 developing a convergence proof for the algo-
rithm using the multiple time scale framework
of Borkar [8]

2 extending the problem to production-inventory
maintenance problems of the nature studied in
[14, 15]

3 an extension of the algorithm to a more general
model of the SMDP which does not need As-
sumptions 1 and 2
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Table 7. Parameters for Cases 2 through 10. Parameters not defined are identical to those for Case 1.

Case 2:
p(4,1,7) = .20, p(4,1,8) = .09, p(7,1,6) = .17, p(7,1,7) = .11, p(9,1,5) = .10
p(9,1,6) = .20, p(5,2,2) = .09, p(5,2,3) = .12, p(7,2,6) = .12, p(7,2,7) = .14
p(9,2,1) = .10, p(9,2,3) = .09
r(2,1,8) = 28,r(3,1,7) = 5,r(4,1,9) = 50,r(5,1,9) =−17,r(10,1,7) = 25
r(2,2,7) = 21,r(3,2,6) =−20,r(4,2,9) =−20
t(4,1,8) = 70, t(7,1,1) = 5, t(1,2,4) = 75, t(9,2,2) = 12
Case 3:
p(4,1,7) = .20, p(4,1,8) = .09, p(7,1,6) = .17, p(7,1,7) = .11, p(9,1,5) = .10
p(9,1,6) = .20, p(5,2,2) = .09, p(5,2,3) = .12, p(7,2,6) = .12, p(7,2,7) = .14
p(9,2,1) = .10, p(9,2,3) = .09
r(1,1,2) =−5,r(2,1,8) = 28,r(3,1,7) = 5,r(4,1,9) = 50,r(5,1,9) =−17
r(8,1,8) = 41,r(10,1,7) = 25,r(1,2,1) =−11,r(1,2,2) =−20,r(2,2,7) = 21
r(3,2,6) =−20,r(4,2,9) =−20,r(7,2,9) = 16
t(1,1,2) = 50, t(4,1,7) = 24, t(4,1,8) = 70, t(5,1,6) = 63, t(7,1,1) = 5
t(10,1,8) = 45, t(1,2,3) = 40, t(1,2,4) = 75, t(9,2,2) = 12, t(10,2,8) = 55
Case 4:
p(4,1,7) = .20, p(4,1,8) = .09, p(7,1,6) = .17, p(7,1,7) = .11, p(9,1,5) = .10
p(9,1,6) = .20, p(5,2,2) = .09, p(5,2,3) = .12, p(7,2,6) = .12, p(7,2,7) = .14
p(9,2,1) = .10, p(9,2,3) = .09
r(1,1,2) =−5,r(2,1,8) = 28,r(3,1,7) = 5,r(4,1,9) = 50,r(5,1,9) =−17
r(7,1,4) = 37,r(7,1,7) = 28,r(8,1,1) = 5,r(8,1,2) = 15,r(8,1,3) = 20
r(8,1,8) = 41,r(9,1,2) = 22,r(9,1,3) = 47,r(10,1,1) = 20,r(10,1,2) = 37
r(10,1,7) = 25,r(1,2,1) =−11,r(1,2,2) =−20,r(2,2,7) = 21,r(3,2,6) =−20
r(4,2,9) =−20,r(7,2,2) =−9,r(7,2,6) =−49,r(7,2,7) = 8,r(7,2,9) = 16
r(8,2,1) = 6,r(8,2,5) = 20,r(10,2,2) =−7
t(1,1,2) = 50, t(4,1,7) = 24, t(4,1,8) = 70, t(5,1,6) = 63, t(7,1,1) = 5
t(10,1,8) = 45, t(1,2,3) = 40, t(1,2,4) = 75, t(9,2,2) = 12, t(10,2,8) = 55
Case 5:
r(7,1,3) = 90,r(7,1,7) = 80,r(10,1,1) = 60,r(10,1,4) = 35,r(10,1,6) =−17
r(10,1,8) = 65,r(10,2,2) =−9,r(10,2,1) = 50,r(10,2,3) =−6,r(10,2,7) =−15
r(10,2,8) =−5
Case 6:
p(7,1,1) = .09, p(7,1,6) = .11, p(9,2,9) = .09, p(9,2,10) = .12, p(10,2,6) = .09
p(10,2,8) = .13
r(2,1,1) =−10,r(2,1,4) =−46,r(2,1,8) =−18
t(6,1,3) = 70, t(9,1,5) = 55, t(3,2,8) = 28, t(6,2,5) = 15, t(7,2,9) = 46
Case 7:
p(4,1,7) = .20, p(4,1,8) = .09, p(4,2,2) = .16, p(4,2,4) = .12
r(3,1,2) = 45,r(3,1,3) = 23,r(4,1,5) = 35,r(7,1,3) = 67,r(6,2,3) = 16
r(7,2,2) = 29
Case 8:
r(5,1,3) =−92,r(5,2,1) = 58,r(5,2,3) = 88
t(1,1,2) = 55, t(6,2,6) = 72
Case 9:
r(5,1,5) = 69, t(5,2,4) = 50, t(6,2,3) = 16
t(3,1,2) = 4, t(1,2,3) = 74
Case 10:
r(10,1,1) = 80,r(10,1,5) = 82,r(10,1,8) = 35,r(10,1,9) = 81,r(10,2,1) = 40
r(10,2,2) = 37,r(10,2,3) = 56,r(10,2,9) = 63,r(10,2,10) = 21
t(9,1,2) = 57, t(10,1,1) = 14, t(10,1,4) = 15, t(3,2,4) = 60, t(9,2,7) = 80
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