PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

DWT-PSD extraction feature for defect diagnosis of small wind generator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the ability to detect broken rotor bar (BRB) defects in a small renewable energy system (based on a squirrel cage induction generator (SCIG)) by the digital signal processing of captured phase currents, is presented. The new approach proposed in this study is a combination of two techniques. The first technique is a discrete wavelet transform (DWT) by the decomposition of the phase current signal in multilevel frequency bands. This is performed with the analysis of some selected approximations and/or details, which contain both the lower and upper sideband components presenting the characteristic frequency of the BRB fault. The second technique is power spectral density (PSD) analysis. This approach provides the ability to optimize the diagnosis of rotor defects in electrical generators. The results obtained by the proposed DWT-PSD approach are proved and improved by comparing them with the results of the PSD analysis, obtained from the original phase current signal delivered by the 5.7-kW squirrel cage induction generator, based on a small wind energy conversion system.
Czasopismo
Rocznik
Strony
45--52
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Applied Automation and Industrial Diagnostic Laboratory, Ziane Achour University of Djelfa
  • Applied Automation and Industrial Diagnostic Laboratory, Ziane Achour University of Djelfa
  • Applied Automation and Industrial Diagnostic Laboratory, Ziane Achour University of Djelfa
  • Applied Automation and Industrial Diagnostic Laboratory, Ziane Achour University of Djelfa
Bibliografia
  • 1. Pons Llinares J, Climente Alarcón V, Vedreño Santos F, Antonino Daviu J, RieraGuasp M. Electric machines diagnosis techniques via transient current analysis. Proceedings of the 38th Annual Conference of the IEEE Industrial Electronics Society, IECON 2012, 25-28 October, Montreal, Canada.
  • 2. Kia SH, Henao H, Capolino GA. Efficient digital signal processing techniques for induction machine fault diagnosis. Proc. IEEE Workshop Electrical Machines Design, Control and Diagnosis, WEMDCD 2013, Mar. 11-12, Paris, France.
  • 3. Thomson WT, Fenger M. Current signature analysis to detect induction motor faults. IEEE Industry Applications Magazine 2001;26-34.
  • 4. Cai H, Sun Q, Wood D. Condition monitoring and fault diagnosis of a small permanent magnet generator. Wind engineering. 2016;40(3), 270-282. https://doi.org/10.1177/0309524X16647842
  • 5. Castellani F, Astolfi D, Becchetti M. Berno F. Experimental damage detection on small wind turbines through vibration and acoustic analysis. Proceedings of ISMA 2018 - International Conference on Noise and Vibration Engineering and USD 2018 - International Conference on Uncertainty in Structural Dynamics, 2018:4793-4807.
  • 6. Jinglong Chen, Jun Pan, Zipeng Li, Yanyang Zi, Xuefeng Chen. Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals. Renewable Energy. 2016;89:80-92. https://doi.org/10.1016/j.renene.2015.12.010
  • 7. Wei Teng, Xian Ding, Hao Cheng, Chen Han, Yibing Liu, Haihua Mu. Compound fault diagnosis and analysis for a wind turbine gearbox via a novel vibration model and empirical wavelet transform. Renewable Energy, 2019;136:393-402. https://doi.org/10.1016/j.renene.2018.12.094
  • 8. Jianming Ding, Chengcheng Ding. Automatic detection of a wheelset bearing fault using a multilevel empirical wavelet transform. Measurement. 2019;134: 179-192. https://doi.org/10.1016/j.measurement.2018.10.064
  • 9. Dong Wang, Kwok-Leung Tsui, Yong Qin. Optimization of segmentation fragments in empirical wavelet transform and its applications to extracting industrial bearing fault features. Measurement, 2019;133:328-340. https://doi.org/10.1016/j.measurement.2018.10.018
  • 10. Baojia Chen, Baoming Shen, Fafa Chen, Hongliang Tian, Wenrong Xiao, Fajun Zhang, Chunhua Zhao. fault diagnosis method based on integration of RSSD and wavelet transform to rolling bearing. Measurement. 2019;131:400-411. https://doi.org/10.1016/j.measurement.2018.07.043
  • 11. Jaskaran Singh, Darpe AK, Singh SP. Rolling element bearing fault diagnosis based on OverComplete rational dilation wavelet transform and auto-correlation of analytic energy operator. Mechanical Systems and Signal Processing. 2018;100:662-693. https://doi.org/10.1016/j.ymssp.2017.06.040
  • 12. Ping Ma, Hongli Zhang, Wenhui Fan, Cong Wang. Early fault diagnosis of bearing based on frequency band extraction and improved tunable Q-factor wavelet transform. Measurement, In press, accepted manuscript, 2019;l137: 189-202 https://doi.org/10.1016/j.measurement.2019.01.036
  • 13. Xin Zhang, Zhiwen Liu, Jiaxu Wang, Jinglin Wang. Time–frequency analysis for bearing fault diagnosis using multiple Q-factor Gabor wavelets. ISA Transactions. 2019;87:225-234. https://doi.org/10.1016/j.isatra.2018.11.033
  • 14. Yan R, Gao RX, Chen X. Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Processing 2014; 96:1-15.
  • 15. Antonino Daviu JA, Riera Guasp M, Pineda Sánchez M, Pérez R B. A critical comparison between DWT and Gilbert-Huang-Based methods for the diagnosis of rotor bar failures in induction machines. IEEE Transactions on Industry Applications 2009;45:1794-1803.
  • 16. Daubechies I. Ten lectures on wavelets. SIAM, Philadelphia, PA. 1992.
  • 17. Mallat S. A wavelet tour of signal processing. 2nd. Edition, Academic Press, San Diego, California, USA. 1999.
  • 18. Strang G, Nyugen T. Wavelets and Filter Banks, Wellesley Cambridge Press, Wellesley, MA, USA, 1996.
  • 19. Qian, S. Introduction to Time-Frequency and Wavelet Transforms, Prentice Hall PTR, 2002.
  • 20. Mallat SG. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1989;11(7): 674-693.
  • 21. Rafiee J, Rafiee MA, Tse PW. Application of mother wavelet functions for automatic gear and bearing fault diagnosis. Expert Systems with Applications, 2010; 37(6): 4568-4579.
  • 22. Lahcène Noureddine, Touhami O. Diagnosis of wind energy system faults Part I : Modeling of the squirrel cage induction generator. International Journal of Advanced Computer Science and Application (IJACSA) 2015;6:46-53.
  • 23. Daviu JA, Riera Guasp M, Roger Folch J, Martínez Giménez F, Peris A. Application and optimization of the discrete wavelet transform for the detection of broken rotor bars in induction machines. Appl. Comput. Harmon. Anal. 2006;21:268-279.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5ed02e7a-5c65-40fe-9ff5-e636a7aa1bd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.