PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical and experimental in-service long-term deflection response of symmetrically and non-symmetrically reinforced concrete piles

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reinforced concrete piles employed in earth retaining systems are typically designed with symmetric reinforcement. The non-symmetric RC wall piles have recently been introduced by the authors, obtaining savings of up to 50% in weight in longitudinal reinforcing steel compared with the traditional solutions, leading to significant financial savings while also reducing associated environmental impacts. The structural behavior of this new RC member under long-term loading is studied, comparing it with its symmetrical counterpart. An experimental campaign has been carried out. Full scale specimens with circular cross sections symmetrically and asymmetrically reinforced were tested. Results have shown that asymmetrically RC pile developed a slightly higher deflection than its symmetrical counterpart. A new expression for the effective area of concrete in tension applicable to non-symmetrical piles is introduced. Moreover, a new stress–strain law for cracked concrete that accounts the tension stiffening effect for long-term loading is proposed. Finally, for non-symmetrical RC wall piles, the evolution of the parameter that takes into account the duration of loading in deformations is presented. Although more evidence is needed, it is shown that tension stiffening effect contribution could be overestimated by Eurocode 2 in the case of non-symmetrically or underestimated in case of symmetrically RC piles.
Rocznik
Strony
433--445
Opis fizyczny
Bibliogr. 29 poz., fot., rys., tab., wykr.
Twórcy
  • Department of Structural Mechanics, University of Granada (UGR), Campus Universitario de Fuentenueva s/n, 18072 Granada, Spain
  • Department of Structural Mechanics, University of Granada (UGR), Campus Universitario de Fuentenueva s/n, 18072 Granada, Spain
  • Department of Engineering, Universidad Loyola Andalucía, Campus Palmas Altas, C/Energía Solar, n81, 41014 Sevilla, Spain
  • Department of Structural Mechanics, University of Granada (UGR), Campus Universitario de Fuentenueva s/n, 18072 Granada, Spain
Bibliografia
  • [1] V. Yepes, T. García-Segura, J.M. Moreno-Jiménez, A cognitive approach for the multi-objective optimization of RC structural problems, Archives of Civil and Mechanical Engineering 15 (2015) 1024–1036. , http://dx.doi.org/10.1016/j. acme.2015.05.001.
  • [2] O. Amir, A topology optimization procedure for reinforced concrete structures, Computers & Structures 114–115 (2013) 46–58. , http://dx.doi.org/10.1016/j.compstruc.2012.10.011.
  • [3] S.K. Dalton, S. Atamturktur, I. Farajpour, C.H. Juang, An optimization based approach for structural design considering safety, robustness, and cost, Engineering Structures 57 (2013) 356–363. , http://dx.doi.org/10.1016/j.engstruct.2013.09.040.
  • [4] E. Fraile-Garcia, J. Ferreiro-Cabello, E. Martinez-Camara, E. Jimenez-Macias, Optimization based on life cycle analysis for reinforced concrete structures with one-way slabs, Engineering Structures 109 (2016) 126–138. , http://dx.doi. org/10.1016/j.engstruct.2015.12.001.
  • [5] V. Yepes, J. Alcala, C. Perea, F. González-Vidosa, A parametric study of optimum earth-retaining walls by simulated annealing, Engineering Structures 30 (2008) 821–830. , http:// dx.doi.org/10.1016/j.engstruct.2007.05.023.
  • [6] L.M. Gil-Martín, E. Hernández-Montes, M. Aschheim, Optimization of piers for retaining walls, Structural and Multidisciplinary Optimization 41 (2010) 979–987. , http://dx. doi.org/10.1007/s00158-010-0481-2.
  • [7] E. Hernández-Montes, P. Alameda-Hernández, L. Gil-Martín, Strength design criterion for asymmetrically reinforced RC circular cross-section in bending, Computers and Concrete 11 (2013) 571–585.
  • [8] C. Camp, A. Akin, Design of retaining walls using big bang–big crunch optimization, Journal of Structural Engineering 138 (2012) 438–448. , http://dx.doi.org/10.1061/ (ASCE)ST.1943-541X.0000461.
  • [9] J.V. Martí, T. García-Segura, V. Yepes, Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy, Journal of Cleaner Production 120 (2016) 231–240. , http://dx.doi.org/10.1016/j.jclepro.2016.02.024.
  • [10] A. Şahin, Mathematical models and solution algorithms for computational design of RC piles under structural effects, Applied Mathematical Modelling 35 (2011) 3611–3638. , http:// dx.doi.org/10.1016/j.apm.2011.01.037.
  • [11] L.M. Gil-Martín, J.F. Carbonell-Márquez, M.A. Fernández-Ruíz, E. Hernández-Montes, Theoretical and experimental short-term behavior of non-symmetrical wall pile retaining systems, Engineering Structures 112 (2016) 172–183. , http:// dx.doi.org/10.1016/j.engstruct.2016.01.019.
  • [12] K. Weber, M. Ersnt, Entwicklung von Interaktionsdiagrammen für asymmetrisch bewehrte Stahlbeton-Kreisquerschnitte, Beton- Und Stahlbetonbau 84 (1989) 176–180.
  • [13] CEN, Eurocode 2: Design of Concrete Structures – Part 1—1: General Rules and Rules for Buildings UNE-EN 1992-1-1, European Committee for Standardization, Brussels, 2004.
  • [14] R.I. Gilbert, Time-dependent stiffness of cracked reinforced and composite concrete slabs, Procedia Engineering 57 (2013) 19–34. , http://dx.doi.org/10.1016/j.proeng.2013.04.006.
  • [15] M.K. Hurst, Prestressed Concrete Design, 2nd edition, E & FN Spon, London and New York, 1998.
  • [16] R.I. Gilbert, G. Ranzi, Time-Dependent Behaviour of Concrete Structures, Ed. Spon P, 2011.
  • [17] FIB, Model Code 2010. Model Code 2010 – Final draft vol. 1. Fib Bulletin No. 65, International Federation for Structural Concrete, Lausanne, 2012.
  • [18] J.Y.K. Lam, P.L. Ng, A.K.H. Kwan, Tension stiffening in concrete beams. Part 2: member analysis, Proceedings of the Institution of Civil Engineers – Structures and Buildings 163 (2010) 29–39. , http://dx.doi.org/10.1680/stbu.2009.163.1.29.
  • [19] E.C. Bentz, Explaining the riddle of tension stiffening models for shear panel experiments, Journal of Structural Engineering 131 (2005) 1422–1425. , http://dx.doi.org/10.1061/ (ASCE)0733-9445(2005)131:9(1422).
  • [20] J. Il Lee, Y.H. Lee, A. Scanlon, Long-term tension-stiffening effects in concrete. Paper by Richard H. Scott and Andrew W. Beeby discussion by Je Il Lee, Young Hak Lee, and Andrew Scanlon, ACI Structural Journal (2005) 904–905.
  • [21] G. Kaklauskas, V. Gribniak, D. Salys, A. Sokolov, A. Meskenas, Tension-stiffening model attributed to tensile reinforcement for concrete flexural members, Procedia Engineering 14 (2011) 1433–1438.
  • [22] Y. Yao, F.A. Silva, M. Butler, V. Mechtcherine, B. Mobasher, Tension stiffening in textile-reinforced concrete under high speed tensile loads, Cement and Concrete Composites 64 (2015) 49–61. , http://dx.doi.org/10.1016/j.cemconcomp.2015.07.009.
  • [23] E. Hernández-Montes, A. Cesetti, L.M. Gil-Martín, Discussion of ‘‘An efficient tension-stiffening model for nonlinear analysis of reinforced concrete members’’ by Renata S.B. Stramandinoli, Henriette L. La Rovere, Engineering Structures 48 (2013) 763–764.
  • [24] H.Q. Wu, R.I. Gilbert, An Experimental Study of Tension Stiffening in Reinforced Concrete Members Under Short- Term and Long-Term Loads, UNICIV REPORT No. R-449, University of New South Wales, 2008.
  • [25] R.I. Gilbert, Calculation of long-term deflection, in: CIA Semin. – Control Long-Term Deflection, 2008, 22.
  • [26] M.P. Collins, D. Mitchell, Prestressed Concrete Structures, Prentice Hall, 1991.
  • [27] J.F. Carbonell-Márquez, L.M. Gil-Martín, M.A. Fernández-Ruíz, E. Hernández-Montes, Effective area in tension stiffening of reinforced concrete piles subjected to flexure according to Eurocode 2, Engineering Structures 76 (2014) 62–74. , http://dx. doi.org/10.1016/j.engstruct.2014.06.041.
  • [28] H. Wiese, M. Curbach, K. Speck, S. Weiland, L. Eckfeldt, T. Hampel, Rißbreitennachweis für Kreisquerschnitte, Beton- Und Stahlbetonbau 99 (2004) 253–261.
  • [29] L.M. Gil-Martín, J.F. Carbonell-Márquez, E. Hernández- Montes, Upper bound to the effective area of concrete in tension, in: Third Int. Conf. Mech. Model. Struct. Eng. Sev., 2015.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5eca8e04-9150-4df9-9042-1288a87ed57d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.