PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Study of the stress-strain state of a perforated plate with stiffening ribs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the mechanical behaviour of solid and perforated plates with stiffening ribs through a systematic three-stage approach integrating simulation and experimental methods. Initial investigations focused on the formation of stiffeners, revealing that rupture ceased at a hole diameter of 10 mm, with maximum equivalent stresses reaching 275 MPa. Using ANSYS Workbench, we analysed the stress-strain state and stability characteristics, finding a critical load of 43 N for stability loss in the perforated plates. Experimental results indicated that a perforated plate deflected 10.35 mm under a load of 38.5 N, whereas a solid plate exhibited the same deflection under only 11.5 N, indicating a 70 % difference in load capacity. Additionally, the weight of the solid plate was measured at 92.8 grams, compared to 76.6 grams for the perforated plate, achieving a weight reduction of over 17 %. These findings highlight the superior structural performance and material efficiency of perforated plates with stiffening ribs. The study underscores the potential for optimizing engineering designs to enhance functionality and reduce material usage.
Rocznik
Strony
18--32
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Faculty of Mechanical Engineering and Robotics, AGH University of Krakow Krakow, Poland
  • Department of Transport Equipment and Technology, S. Seifullin Kazakh Agrotechnical Research University, Astana, Kazakhstan
  • Ivano-Frankivsk National Technical University of Oil and Gas Ivano-Frankivsk, Ukraine
  • Faculty of Mechanical Engineering and Robotics, AGH University of Krakow Krakow, Poland
Bibliografia
  • [1] Luo, Z., Zhao, H., Qiao, D., Zhang, Y., An, J., Tan, C., Liang, L., Liu, A., & Shao, X. (2024). Shear behavior on PBL shear connector with a relatively thin perforated steel plate in steel-UHPC composite bridge deck system. Engineering Structures, 316, 118583.
  • [2] Rahmonov, B.S., Karimov, I.M., Narzulloyev, M.A., Sobirova, R.A., & Almuratov, S.N. (2024). Action of moving load on a ribbed cylindrical shell with viscoelastic filler. API Conference Proceedings, 3045(1), 030099.
  • [3] https://help.solidworks.com/2023/russian/SolidWorks/cworks/c_Linearized_Buckling_Analysis .htm?id=78b31d81063348a8a778699ff348adff#Pg0.
  • [4] Ren, C., Liu, Q., Wang, B., & Dai, L. (2020). Numerical analysis and design method of cold-formed thin-walled c-section steel perforated member. Journal of Shanghai Jiaotong University, 54(10), 1084-1093.
  • [5] Rozylo, P. (2024). Limit states of thin-walled composite structures with closed sections under axial compression. Composites Part B: Engineering, 287, 111813.
  • [6] Romanіuk, V., Bezniuk, L., Supruniuk, V., Kononchuk, O., Meshcheryakova, O., & Sorochak, A. (2024). Features of the work of continuous perforated beams near intermediate supports. Procedia Structural Integrity, 59, 471-478.
  • [7] Huang, X., Zhou, Z., Shen, Y., Zhao, J., & Li, R. (2024). Post-fire mechanical properties and constitutive modeling of LY225 low-yield strength steel. Journal of Constructional Steel Research, 221, 108923.
  • [8] Manuylov, G.A., Kositsyn, S.B., & Grudtsyna, I.E. (2020). Numerical analysis of stability of the stiffened plates subjected aliquant critical loads. Structural Mechanics of Engineering Constructions and Buildings, 16(1), 54-61.
  • [9] Bagherinejad, M.H., & Haghollahi, A. (2020). Study on topology optimization of perforated steel plate shear walls in moment frame based on strain energy. International Journal of Steel Structures, 20, 1420-1438.
  • [10] Bagherinejad, M.H., & Haghollahi, A. (2019). Topology optimization of perforated steel plate shear walls with thick plate in simple frames. Iran University of Science & Technology, 9(3), 457-482.
  • [11] Sayed, A.M. (2019). Numerical analysis of the perforated steel sheets under uni-axial tensile force. Metals, 9(6), 632.
  • [12] Patil, R.A., & Salgar, P.B. (2024). Experimental investigation on structural behaviour of castellated column under axial load. Asian Journal of Civil Engineering, 25(6), 4645-4655.
  • [13] Bartus, J., & Odrobinak, J. (2024). On the shear force redistribution in composite steel and concrete beams with web openings. Buildings, 14(6), 1658.
  • [14] De’nan, F., Wai, C.S., & Hashim, N.S. (2024). Impact of web perforation size and shapes on structural behavior: a finite element analysis. World Journal of Engineering, 21(5), 911-923.
  • [15] Derda, T. (2022). Suddenly loaded arrays of pillars with variable range of load transfer. Journal of Applied Mathematics and Computational Mechanics, 21(4), 16-27.
  • [16] Sun, L., Liu, Y., Wang, H., Shi, F., Liu, J., & Jiang, L. (2023). Tensile stiffness of perfobond rib connectors in steel-concrete composite pylon of bridges. Engineering Structures, 284, 115931.
  • [17] Neiva, L., Braz Starlino, J.A., Elias, G., Cunha Sarmanho, A.M., & Nicchio Alves, V. (2022). Industrial storage system continuous perforated uprights: a combined design proposal. Revista de la Construcción, 21(2), 204-214.
  • [18] Deng, X., Chen, Zh., & Zhou, Yu. (2010). Effects of gaps and bearing types on performance of perforated triple-steel tube buck ling-restrained brace. Journal of Earthquake Engineering and Engineering Vibration, 30(3), 64-69
  • [19] Xu, X., Liu, Y., & Zuo, Y. (2018). Contribution of perforated steel ribs to load-carrying capacities of steel and concrete composite slabs under negative bending. Advances in Structural Engineering, 21(12), 1879-1894.
  • [20] Erdal, F. (2016). Effect of stiffeners on failure analyses of optimally designed perforated steel beams. Steel and Composite Structures, 22(1), 183-201.
  • [21] Theoretical Manual SolidWorks Simulation. (2015). Dassault Systèmes.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5eca155c-5d92-46cf-b3db-0469e016ee48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.